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Figure 1. Robiot enables end-users to take a video and automatically generates mechanisms that can actuate everyday objects to perform simple physical 
tasks. All the four examples were designed by participants in our design session: lowering a lamp while busy soldering (a), waving a hand up to open a 
trashcan afar (c), setting up a scheduled house plant water spraying system (e), and asking the drawer to open itself when having no extra hand (g). 

ABSTRACT 
Users can now easily communicate digital information with an 
Internet of Things; in contrast, there remains a lack of support 
to automate physical tasks that involve legacy static objects, 
e.g., adjusting a desk lamp’s angle for optimal brightness, turn-
ing on/off a manual faucet when washing dishes, sliding a 
window to maintain a preferred indoor temperature. Automat-
ing these simple physical tasks has the potential to improve 
people’s quality of life, which is particularly important for 
people with a disability or in situational impairment. 

We present Robiot—a design tool for generating mechanisms 
that can be attached to, motorized, and actuating legacy static 
objects to perform simple physical tasks. Users only need 
to take a short video manipulating an object to demonstrate 
an intended physical behavior. Robiot then extracts requisite 
parameters and automatically generates 3D models of the 
enabling actuation mechanisms by performing a scene and 
motion analysis of the 2D video in alignment with the object’s 
3D model. In an hour-long design session, six participants 
used Robiot to actuate seven everyday objects, imbuing them 
with the robotic capability to automate various physical tasks. 
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INTRODUCTION 
An Internet of Things (IoT) is becoming increasingly ubiq-
uitous in our everyday environments. Current IoT primarily 
focuses on sensing technologies that enable users to easily ex-
change digital information with spatially-distributed devices, 
e.g., remotely turning on a desk lamp from your phone, feeding 
data from rooftop weather sensors to the sprinkler control. 

In contrast, there remains a lack of support for physical tasks, 
e.g., adjusting the angles of a desk lamp for optimal brightness 
as you perform a soldering task. Automating physical tasks 
has important implications for people with a disability or in 
a situational impairment. For example, turning on a manual 
faucet without touching it becomes useful when both of your 
hands are dirty, opening a pantry is helpful when you are hold-
ing bags of groceries, and it is convenient to have a window 
that closes by itself when sensing the temperature drops. 

The recent development of actuatable appliances (e.g., smart 
blinds [39], switches [29], and TV deck[31]) and reconfig-
urable furniture [15] suggests a future of ubiquitous robotic 
things: akin to how ubiquitous computing imagined a world 
of omnipresent computational power, we can envision a fu-
ture of everyday objects and appliances equipped with robotic 
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capabilities to interactively carry out a series of complex ac-
tions. With such physical tasks and dynamic actions that assist 
people in a variety of contexts, the future of everyday robotic 
IoT devices can open a door for a new world of everyday 
interactive systems. 

To bridge us to this vision, instead of waiting to replace and 
upgrade a whole world of legacy static objects with fully 
automation-intended gadgets, one reasonable first step is to 
come up with solutions that allow end-users to augment these 
objects with actuatable behaviors. Leveraging a democratiza-
tion of robotic kits and rapid prototyping machines, prior work 
has proposed the design of external [56, 30] or add-on [45, 53] 
actuation mechanisms to operate a physical control interface. 
To generalize the approach to a wider range of everyday things, 
past research primarily focuses on generating passive adap-
tations to reduce the effort of operating handheld objects [9]. 
In contrast, active mechanisms on everyday objects remains 
a nascent topic—very little is known how average users can 
create actuation mechanisms with desired motion to automate 
everyday objects for even the simplest physical tasks. 

We present Robiot—a design-by-demonstration tool for end-
users to fabricate add-on mechanisms to actuate legacy static 
objects for everyday physical tasks. Using Robiot, users only 
need to take a short video manipulating an object to demon-
strate an intended physical behavior, such as lowering a desk 
lamp, squeezing a spray bottle, or opening a drawer. To gen-
erate the actuation mechanisms, Robiot extracts two requisite 
parameters: (i) first it performs a scene and motion analysis 
in the video domain to infer the type of joint corresponding 
to the demonstrated motion; (ii) then it retrieves the object’s 
3D model from a pre-constructed repository and identifies ma-
neuverable/ground parts—where on the object to ground 
a mechanism and where to let it exert the actuation. These 
two parameters lead to a set of candidate mechanism designs, 
which can be further filtered by adjusting several design pa-
rameters, e.g., range of motion, torque and speed. Figure 1 
and 3-6 show several of exemplary applications designed us-
ing Robiot, fabricated and installed by our study participants. 
In an hour-long design session, six participants successfully 
designed 14 mechanisms. After 3D printing, they were able 
to assemble and install mechanisms on existing objects with 
instructions given by the system, finding its usefulness for 
future use in their environment to actuate own things. 

Contribution 
Our main contribution is an end-to-end pipeline that requires 
very minimal user input to automatically generate 3D print-
able actuation mechanisms by a novel combination of 2D 
video analysis and 3D geometry processing. Although we 
demonstrated 3D printing as the main fabrication technique, 
our pipeline’s ability to extract mechanically meaningful in-
formation from user demonstration can potentially generalize 
to other manufacturing techniques. 

Limitations 
We currently focus on small rather than furniture-scale objects. 
Our end-to-end pipeline requires a pre-existed 3D model of 
the target legacy object (although the advancement in scanning 

technology might soon dispense with such requirement). We 
focus on one degree of freedom at a time (e.g., a user would 
demonstrate rotating one joint of the lamp rather than multiple 
joints). We assume an ideal capturing angle of the camera, i.e., 
its orientation as orthogonal as possible to the object’s motion 
path to best extract movements from the video and there is no 
occlusion of the object in the video; Finally, our focus is on 
design and fabrication; techniques that interact with actuated 
objects is beyond the present scope and will be addressed in 
future work. 

RELATED WORK 
Robiot provides end-users with a design tool that can create 
mechanisms to attach to and actuate existing everyday objects 
for simple physical tasks. This goal cross-cuts three areas of 
prior work: (i) personal robots that interact with and assist peo-
ple with their physical tasks; (ii) reality-based design tools that 
extract information from the real world to create designs that 
can in turns augment the real world; and (iii) computational 
methods of designing and prototyping functional objects. 

Personal Robotics 
Research in personal robotics has sought to democratize robots 
to assist people with a range of physical tasks in home and 
offices. Designing robots with motion enables users to com-
municate and dynamically engage with robots, such as having 
a robot aid a user’s office tasks [19]. Further, to consider a 
broader audience, personal robots are taking an increasingly 
important role in enabling people with disabilities [7]. 

At a smaller scale, robots can perform grasping and manipula-
tion of everyday objects. Grasping and manipulation remains a 
fundamental challenge that drives new algorithmic and system 
designs [50]. At the application level, grasping and manipu-
lation also enables robots to assist people’s daily living tasks, 
from fetching a mug [55] to taking medications [43]. On 
the other hand, robots can now support people’s whole-body 
activity in a large scale, such as a soft assistive robot that 
provides scaffolding and protection for elderly people when 
they take a bath [35]. Robot assistance is also frequently used 
in navigation, from orienting oneself in a work area [54] to 
maneuvering in a shopping mall [17]. 

Despite such development, the range of physical tasks a per-
sonal robot can handle remains limited due to the large variety 
of tasks as well as the different objects involved. To make 
robot’s ability flexible and scalable, prior work has been fo-
cusing on using programming by demonstration to teach robot 
custom behaviors [16, 6, 58]. Although in this way the physi-
cal tasks become programmable to a robot, the performance 
is by and large determined by the one-size-fits-all design of 
the robot that is available. Worse, at times such a robot might 
not even be available to perform a bespoke task. To overcome 
this limit, prior work such as Coros et al.’s provides an expres-
sive means for specifying robotic behaviors by sketching a 
user-defined motion path, which generates a corresponding 
linkage design for an automata [12]. Instead of sketching, our 
design tool allows a user to directly manipulate an existing 
object to specify a desired physical behavior, and then auto-
matically generates a behavior-specific robotic component that 
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can retrofit to and actuate everyday objects to assist users in 
automating simple physical tasks. 

Reality-based Design Tools 
Related to enabling design of actuating physical tasks, past 
research has explored a class of reality-based design tools that 
address two important issues: (i) how to extract information 
from the physical world that can lead to (ii) creating solutions 
that can leverage personal fabrication to augment the physical 
world. 

The need to extract information from the physical world coin-
cides with many research goals of Augmented Reality (AR). 
Early work such as DART allows designers to rapidly tran-
sition storyboards to a work experience based on a camera 
view and an live AR authoring environment [34] A recent 
surge of AR technologies gives rise to prototyping tools that 
incorporate real-world information in the design process, such 
as directly viewing, positioning and iterating a 2D sketch in a 
3D real environment [3, 40, 57, 25, 44]. 

Obtaining an understanding of the physical world informs new 
ideas of augmentation, often manifested as the idea of ‘me-
chanical hijacking’ first demonstrated by Davidoff et al. [13] 
and later extended by Chen et al. in adapting hand-operated 
objects for easier manipulation [9]. AutoConnect enables the 
automatic generation of structures that connect (i.e., holding 
in place) two user-selected objects based on their scanned 
digital representations [27]. Printy allows novice users to fab-
ricate fully-functional internet-connected object [4]. Patching 
provides a hybrid platform that scans, mills, and additively 
fabricate new components to replace part of an existing object 
with augmented functionality [38]. Facade uses the crowd 
to annotate a visually inaccessible physical interface (e.g., 
buttons without tactile feedback) and generates 3D printable 
tactile overlay to assist visually-impaired people to use these 
interfaces [18]. Perhaps the most related to our work is Retro-
Fab, which offers an authoring tool to scan an existing physical 
interface and automate its controls by adding an enclosure con-
sisting of mechanical and electronic devices [45]. However, 
Retrofab only addresses actuation specific to operating phys-
ical controls and does not consider a more general way to 
encompass motions from various other everyday objects. 

To summarize, as shown in Table 1, the most related work 
in reality-based design tools either focuses on physical in-
terfaces [18, 45], or only addresses everyday objects with 
passive add-on components [9]. Robiot complements existing 
research with a generative pipeline to create active actuation 
mechanisms on everyday objects. 

Table 1. Robiot goes beyond prior work with active mechanisms to actu-
ate a range of everyday objects. 

Physical Interfaces → Everyday Objects 
Passive Facade [18] Reprise [9] 
Active Retrofab [45] Robiot 

Designing and Prototyping Functional Objects 
The eventual goal of our tool is to generate fabrication-ready 
actuation mechanisms. To achieve such functional design, 

prior work has demonstrated two approaches: assembly-based 
and generative design. 

Assembly-based solutions allow users to put together off-the-
shelf components for a functional, often complex object. For 
example, consider a plethora of robotic kits, such as the popu-
lar LEGO Mindstorms [30] used in early work of mechanically 
‘hijacking’ the control of physical devices [13]. TrussFormer 
enables users to 3D print large-scale kinetic structures [26]. 
Zykov et al.’s Molecubes is an open-source modular robotics 
kit that provides a low-cost, ruggedized and expandable plat-
form with software support for visual and control design [59]. 
Schweikardt and Gross demonstrated the expressiveness of 
roBlocks—a reconfigurable modular robotic prototyping tool 
where small, magnetic, heterogeneous components can be 
snapped together to create large and complex constructs [52]. 
Grafter largely automates the process of extracting and recom-
bining mechanical elements from 3D printed machines and 
affords extracting groups of mechanical elements that already 
work together, such as axles and their bearings or pairs of 
gears [49]. 

Generative design allows users to specify their high-level de-
sign goals while leaving the low-level functional considera-
tions to a generative algorithmic process. Autodesk’s Project 
DreamCatcher takes a data-driven approach to generate hun-
dreds of thousands of design options based on input functional 
requirements [47]. To explore the many generated design al-
ternatives, DreamLens provides a visualization platform built 
for exploring large-scale design datasets [36]. DreamSketch 
allows a user to integrate generatively designed components 
with the workflow of sketching [24]. To further incorporate 
users’ intents, Forte loops user input into the optimization 
process to create structures that not only meet functional re-
quirement but also mimic users’ sketches [10]. Generative 
design also enables end-user design and fabrication of robots, 
from creating linkages to exhibit specific motion path [5], to 
the automation of a comprehensive set of design considera-
tions, including different morphology, proportions, gait and 
motions [37]. 

It is also possible to take a hybrid approach that combines 
existing components as well as a generative process. Desai 
et al. propose an assembly-aware design pipeline that auto-
matically lays out user-defined electromechanical components 
and creates 3D printable enclosures to assemble the robot [14]. 
Robiot employs a hybrid approach: the mechanisms design is 
generated based on the intrinsic geometry of the object as well 
as the extrinsic motion demonstrated by the user; then these 
generated components are assembled together with existing 
parts (eg/ motor) and installed on the object. 

ROBIOT: MECHANISMS TO ACTUATE EVERYDAY THINGS 

Overview of Robiot’s Workflow 
As shown in Figure 2, our technical contribution is an end-
to-end pipeline that requires minimum user input to generate 
3D printable mechanism, which actuates legacy static objects. 
Using Robiot, a user simply takes a short video demonstrating 
how they want an object in motion. A wide range of these rigid-
body objects’ motion can be expressed as linear or rotational 
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Figure 2. Overview of Robiot’s end-to-end pipeline for generating actuation mechanisms from a user’s input video. 
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Figure 3. A screenshot of the user interface provided to the user once Robiot generated a set of candidate mechanisms from a given video demonstration: 
the corresponding 3D model (a), the generated mechanisms (b), and sliders to filter the list by range of motion, torque and speed (c). 

[9]. Thus to generate the enabling mechanisms, Robiot models 
the actuated components in two types of joints: prismatic 
(linear) and revolute (rotational). As shown in Figure 2, Robiot 
performs a scene and motion analysis of the input video to 
extract the following information. 

Type of joint - The object is extracted from the video and an 
optical flow technique analyzes the motion, which is used to 
classify whether the motion is linear (prismatic) or rotational 
(revolute). This information leads to specific mechanisms that 
can actuate the object to behave as the user demonstrates in 
the video. 

Maneuverable vs. Ground parts - First a 3D model is re-
trieved from an existing repository that contains preprocessed 
information for matching which 3D model best corresponds 
to the object as viewed in motion. Further, results from the 
above optical analysis are used to segment the 3D model into 
maneuverable and ground parts. Robiot then automatically 
generates a list of possible mechanism designs that also raise 
implicit constraints inferred from the input video, e.g., the 
size of the object’s components, the required minimal torque. 
As shown in Figure 3, Robiot also provides more advanced 
features that allow a user to tweak and filter design options by 
adjusting preferred range of motion, torque, and speed. 

Below we first showcase a series of examples designed using 
Robiot’s workflow while leaving the technical details later in 
following sections. 

Examples Generated by Robiot 
We present a series of examples created by Robiot, which 
automatically generates the 3D models of the mechanisms 
from a user input video. As we focus on the design tool, all 
the subsequent interaction was developed ad hoc (e.g., using 
commercially available voice or gesture sensing input devices) 
as a way to demonstrate Robiot’s potential to perform simple 
physical tasks for users. 

Figure 1 showcases exemplary applications with mechanisms 
installed to everyday objects at home and offices. When both 
of user’s hands are occupied and tied to a task, such as for 
soldering, an automatically adjustable lamp with a reading 
lens can come closer to him, assisting his delicate task such 
as soldering (Figure 1a,b). In the similar vein, as shown in 
Figure 1, when user’s hands are full with garbage grabbed from 
a counter top (c) and a heavy box with clutter (g), automatically 
opening trash can (d) and drawer (h) become convenient for 
her to ease the cleaning task. For a busy office worker who 
is likely to forget to water the plant regularly, a squeezer 
mechanism attached to a spray bottle will do the watering 
tasks according to a predefined schedule (e-f). 
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a b

Figure 4. Automatic stapler is one common office appliance, that Robiot 
can robotize from a cheap manual stapler 

a b

Figure 5. Robiot mechanism attached on top of a soap bottle performs 
pressing to squeeze liquids without touching 

Figure 4-7 further demonstrate a wider range of example ap-
plications with actuation mechanism attachments. There exist 
many commercial automated staplers, which we can replicate 
using a Robiot-created mechanism that performs the same task 
using a cheap stapler (Figure 4). When the user’s both hands 
are dirty, a soap bottle that automatically presses the top to 
squeeze liquid soap (Figure 5) on her hand and a water tap 
turning on water help those who do not want to spread the 
mess (Figure 6). As another example, wearing make-ups is 
one of the most complex tasks, from which people can benefit 
from a mirror with automatable angle adjustment so that its 
usage becomes hands-free. 

IMPLEMENTATION 
In this section, we detail step by step process of creating a 
mechanism, from user input to ready-to-print 3D model for 
end users to assemble and install with the instruction. 

Preprocessing 
Robiot’s analysis of real-world objects starts from a repository 
of 3D models corresponding to it. As opposed to 3D scan-
ning of the object, the models in the repository offer clearer 
and better-defined mesh information than the currently-limited 
scanned data that often requires additional post-scan process-
ing. Such a repository can also be populated with manufactur-
ers cataloging the CAD models at design time and 3rd party 
dataset. However, the advancement in scanning technology 
might soon provide a viable alternative in lieu of a repository. 

As shown in Figure 2, for each object, Robiot performs a one-
time preprocessing step by taking snapshots of the 3D model 
at a set of predefined locations spherically around the object. 
Snapshots are stored together with the object’s 3D model and 
will be used for retrieving the 3D model as detailed below. 

#1 Extracting an object’s 2D and 3D representations 
The input of Robiot’s generative pipeline is a video of a user 
manually manipulating an object to demonstrate the action, 
expected to be produced by some mechanisms. Our first step 

a b

Figure 6. A manual faucet can automatically turn to release water by 
attaching a mechanism to pull the handle. 

a b

Figure 7. Automatically adjusting mirror can aid a user who wears 
make-ups and contact lens using both hands 

is to extract the object’s 2D and 3D representations from the 
video (based on the preprocessed 3D repository). 

As shown in Figure 2, after identifying the first stable frame 
we perform a scene analysis—a foreground extraction to ob-
tain the object’s 2D representation as a binary mask Mvideo 
(with the 1’s representing the object and 0’s the background). 
We implement this step using GrabCut [48], although other 
methods (e.g., deep learning based direct object segmentation 
[28]) can also be used to replace this component in Robiot’s 
pipeline. 

Next, we use Mvideo to retrieve a 3D model from the Robiot 
repository by snapshot matching, i.e., finding a 3D model that 
has a snapshot that best matches Mvideo. For each 3D model, 
we perform a stepwise searching process. Specifically, for 
each snapshot we first binarize it into Msnapshot and scale it to 
match the aspect ratio of Mvideo. We then measure how well 
Msnapshot matches Mvideo by computing a matching score: 

sum(Mvideo ∧ Msnapshot)smathcing = p (1) 
sum(Mvideo) · sum(Msnapshot ) 

We identify the 3D model that has the highest smatching as the 
object’s 3D representation; we also save the corresponding 
Msnapshot for latter processing. 

#2 Determining the type of joint 
Once the area containing the object is extracted, the next step 
is to perform a video-based motion pattern analysis. First we 
extract feature points using the Shi-Tomasi corner detector 
[23], and then use the Lucas-Kanade method [33] to calculate 
the optical flow of these feature points during the course of the 
video. As shown in Figure 8, each feature point is ‘tracked’ 
frame by frame, resulting in a 2D trajectory comprised of an 
array of X/Y coordinates. Next we filter out noises and jitters 
by setting an empirically defined threshold to cut off feature 
points whose trajectory coordinates with a low covariance. 
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a b

Figure 8. Optical flow analysis shows distinct difference between pris-
matic (a) and revolute (b) joints by comparing the least-square fitted 
radius (prismatic joint’s fitted radius is much larger, extending beyond 
the camera view). 

a b
Figure 9. Some objects due to their geometry and texture provide very 
few feature points. To solve this problem, we incorporate a user’s oper-
ating hand whose motion correlates to the manipulated object’s. 

Now that we have collected trajectories representing how the 
object should be actuated, the next step is to determine whether 
such motion can be enabled using a revolute or prismatic joint. 
For each trajectory, we use a least-square method to fit it to an 
arc. The rationale is that if the actuation is revolute (rotational), 
the pivot should physically be part of the object thus the fitted 
radius must be significantly smaller than the fitted radius of 
a prismatic actuation. Now we compare the radius and the 
distance between two states– initial vs. final. Note that without 
occlusion, the initial/final state can be robustly extracted from 
the first/last frame of the demonstration video, respectively. 
As the length of an arc is approximately equal to len = Rsinα 

R(where α is the rotation angle) if len < 4 , resulting in α < 
15◦ , the joint is regarded as prismatic joint, otherwise it is 
regarded as revolute joint. As shown in Figure 8, we compute 
a distribution of the fitted radii from all the trajectories, which 
exhibit a clear separation between the two types of joint. 

One challenge here is that some objects might have very few 
‘sharp corners’ that can be used as feature points for the optical 
flow analysis. To address this, we incorporate the user’s hand, 
which provides ample feature points. As shown in figure 
9, as the hand is used to manipulate the object, its motion 
must match that of the object’s. Thus we use the hand as a 
supplement when there is a lack of feature points detectable 
from the target object. We detect the hand’s position using a 
skin color based method [46]. 

#3 Finding maneuverable parts and grounds 
Having identified the type of joint, the next step is to find 
out where and how to attach a mechanism to an object. The 
joint should be fixed to part of the object that does not move, 
ground, and should ‘grab on’ to part of the object that can 
move, maneuverable parts. The key of the following steps 

Figure 10. Technical sketches of the three mechanisms showing how they 
are actuated. 

is to identify maneuverable parts and grounds, not just in the 
video domain but also in the 3D space as eventually we will 
generate 3D models of mechanisms attached to the actual 
object. 

Recall that the above motion analysis (Figure 8) has already 
identified a set of feature points with significant motion tra-
jectory. We use these feature points to train a segmentation 
model (we use k-nearest neighbor [2]) and apply it to the snap-
shot (Msnapshot ) of the object’s 3D model, marking each pixel 
either as maneuverable or ground. As shown in Figure 2, we 
then unproject pixels of the snapshot back to the 3D model 
using ray casting. As a result, each face of the 3D model is 
associated with one or more snapshot pixels. We take a major-
ity vote to determine whether the face should be considered 
maneuverable or ground. 

#4 Generating Actuation Mechanisms & Instructions 
As described in an overview, Robiot provides a list of possible 
mechanisms as options from the library—gear-rack, four-bar 
linkage, and pin-in-slot—that can afford actuating various 
everyday objects. Figure 10 shows how the three mechanisms 
are actuated basically. Below we describe how mechanisms 
are chosen based on constraints and generated from a core set 
of parameters. 

Prismatic joint (linear motion) . Gear rack is the only mech-
anism that we use for both types of joints. As shown in Figure 
11(a), the gear-rack system translates the rotary motion of the 
motor into linear motion, which enables a lamp height (linear) 
to be adjusted by a motor (rotation). Most of the gear-rack 
components are standardized, except for the length or rack 
to be determined by the range of motion, computed from the 
union of trajectories from the optical flow analysis. 

Revolute joint (rotational motion) . When the type of joint is 
revolute, all three (See Figure 11) mechanisms can be consid-
ered and modeled after the same set of parameters. Each of the 
three mechanisms can be generated based on three parameters 
and their relations: the lengths of the two links l1 and l2 (see 
Figure 11) and the range of motion (rotation) α . 

Despite their similarity, the choice of one mechanism over 
another is based on intrinsic constraints. Gear-rack allows 
larger motion and larger torque at a cost of larger installation 
space, whereas pin-in-slot could be installed in a smaller space 
but cannot provide large torques; four-bar-linkage stands in 
between and has much fewer applicability constraints. 

Specifically, for gear-rack as a revolute joint, two constraints 
contribute: (i) the size of the motor (currently set to default 
in the system) and the two connecting components limit the 
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Figure 11. Three mechanisms and their parameters (gear rack appears
twice for both types of joints). For revolute joints, different mechanisms
can be considered and modeled after the same set of parameters – l1, l2, l3
and α .
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Figure 12. Two cases where gear rack does not apply

minimum length of l3; (ii) the range of rotation α cannot
exceed 180◦(figure 12). For pin-in-slot, the main constraint
is whether it can meet the required torque on the pivot τp.
For the same motor torque τm, pin-in-slot generates a much
smaller τp (τp = τm sin(β − 90◦)/l2) compared to the other
two mechanisms.

Programmatically generating 3D models of mechanisms
All mechanisms are generated procedurally using basic primi-
tives and boolean operations. For example, for gear-rack, we
use trapezoid shape to generate the teeth of the rack and use
rectangle or self-defined closed curve to extrude to get the 3D
model; the gear is based on an existing example provided by
OpenJSCAD. For pin-in-slot, the link attached to the motor
to transmit the power from the motor contains a wheel and a
connecting rod, which are generated using cylinders. For four-
bar-linkage, the link is cylinder-shaped and we use cylinders
to generate the connecting joints between two links.

Installation: fasteners and instructions For fastening, we
employ Chen et al.’s method [8] to compute the circumference
of a cross section corresponding to a maneuverable/ground
part. We then generate a pipe clamp as part of the mechanism

that can be bolted to fasten the mechanism onto existing ob-
jects. Other attachment techniques (e.g., [8, 27]) can be also
applied based on the target shape.

User interface After the system automatically generates a set
of recommended mechanisms, Robiot’s UI allows a user to
further specify desired strengths and properties (e.g. range of
motion, required torque and speed of the motion).

Finally, we generate instructions to assist end-users to install
the generated mechanisms onto existing objects. We provide
standard instructions for fastening a pipe clamp with bolts and
configuring a motor; for each specific case, as shown in figure
14, we also visualize where on the object to install which part.

Software and Hardware
Robiot’s front end is written in JavaScript using jQuery1 for
UI development, three.js2 for 3D graphics, and OpenJSCAD3

for procedurally generating the geometry of actuation mecha-
nisms. The back end Python. Everything runs on a MacBook
Pro (15-inch, 2016 year) with a 2.7 GHz Intel i7 and 16 GB
2133 MHz LPDDR3 memory. In our design session and
demonstrations, the front end runs on a Google Chrome web
browser. We use Dynamixel XL-430 W-250 motors to power
the actuation mechanisms, which were all 3D printed using an
Ultimaker S5 using primarily white PLA.

DESIGN SESSIONS
To validate Robiot, we conducted informal, qualitative de-
sign sessions with six participants (aged 20-25, female=3,
male=3). The objective of the study is to let participants cre-
ate mechanism designs to actuate a set of everyday objects
using Robiot’s generative pipeline. In so doing, we try to elicit
users’ initial reaction and feedback to the system in order to
validate Robiot’s easiness to use, its usefulness for automating
physical tasks, as well as what to further improve to enhance
its efficiency in robotizing things.

Participants
We recruited participants from the university. One participant
had a Mechanical Engineering background and one an Elec-
trical and Computer Engineering background, both of which
self-reported that they were knowledgeable in mechanical en-
gineering. The other participants did not have any engineering
background. Amongst all participants, three had experienced
CAD systems, while the others did not. One participant did
not even know what CAD means.

Apparatus, Tasks and Procedure
There were two different sessions in two days to budget time
for 3D printing mechanisms that participants designed on the
first day, which they continued to assemble and interact with
them on the second day.

Design Session (Day 1) - started with a five-minute quick
tutorial. We introduced to a participant how Robiot works
step by step using a simple educational example—making an
1https://jqueryui.com/
2https://threejs.org/
3https://openjscad.org/
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a b

Figure 13. Participants in our study took videos of them manipulating 
everyday objects (a), whereby Robiot generated corresponding actua-
tion mechanisms for participants to explore on our user interface (b) 

old-school stapler automatic (Figure 4). Once the participant 
understood the concept and the process of Robiot, they pro-
ceeded to try out our design tool. Participants were free to 
choose at least two from a set of seven objects we provided, 
including lamps (×3), spray bottle, squeeze bottle, trash can, 
make-up mirror, and drawer. These objects strike a balance 
between prismatic and revolute joints, also variations of the 
same object (lamps), and between different actuation types for 
similar functionalities (spray vs. squeeze bottles). 

The main tasks consisted of participants using Robiot to create 
an actuation mechanism by taking a video (using an iPhone XS 
max running iOS 12.1.4) provided by us) as they manipulated 
each object. To avoid leading the participant, for each object 
we showed them images of the initial state (e.g., drawer closed) 
and final state (e.g., drawer open). The participant was asked 
to manipulate each object to achieve the final state. 

After taking the video, participants explored and selected from 
a number of mechanism designs generated by Robiot from a 
viewer using a laptop (Figure 13b). As we would fabricate 
user-created mechanisms, we had to budget the printing time, 
thus allowing each participant to choose two objects, each 
of which with one mechanism design. The first session took 
about 45 minutes. 

Assembly & Interaction Session (Day 2) took place after we 
3D printed participants’ designs. On Day 2, the participants 
were given instructions for assembly generated by Robiot 
Figure 14, based on which they assembled the printed mech-
anisms and attach to the corresponding objects. Participants 
could try out interaction with the actuated objects using pre-
defined gestures implemented via a Leap Motion4. Our main 
goal is to let participants experience their created mechanisms 
in action as they act; studying different types of techniques to 
interact with such mechanisms and letting them assign desired 
interactions to actuate them is beyond the scope of this paper, 
which we leave for future work. 

a b

c d
Figure 14. Robiot generates an instruction for assembly (a), then a par-
ticipant can assemble and install following that instruction (b), to inter-
act with the robotic things using gesture (c) lowering the lamp height to 
work with optimal brightness when soldering (d) 

* 1: Strongly disagree – 7: Strongly agree 
1 2 3 4 5 6 7 Mean 

Q1: It is easy to learn how to use Robiot 
1 - 1 - - 3 1 4.8 

Q2: The process require less effort than I had expected 
1 - - - 1 2 2 5.3 

Q3: It is easy to assembly the mechanisms 
- - - 1 2 1 2 5.7 

Q4: The installed mechanism behave as you expected 
- - - - 1 2 3 6.3 

Q5: It is useful to have such mechanisms to 
actuate legacy objects 

- - - - 1 5 - 5.8 
Table 2. Selected statements with survey scores, counts in each cell indi-
cate how many participants rated their scores 

feedback about the entire design and fabrication process and 
any suggestions for improvement. 

Results and Findings 
Participants created a total of 14 mechanism designs using 
Robiot. All but one participant successfully assembled their 
designs (the only failure case was due to a critical component 
broken before the second session). 

At the end of the session on Day 1, participants filled out a 
questionnaire regarding overall user experience, including the 
difficulty to learn how to use Robiot and whether the process 
required extra effort than what they had expected (in the Likert 
scale 1-7). At the end of the Day 2, they filled out another 
questionnaire to answer (i) how difficult it was to assemble 
the mechanisms; (ii) whether the installed mechanisms behave 
as they expected; (iii) perceived usefulness of having such 
mechanisms to actuate legacy objects. Then we solicited 

4https://www.leapmotion.com/ 

We first analyzed participants’ questionnaire responses for 
the quantitative analysis. Table 2 summarizes the results on 
each question, gauging easiness and usefulness of the tool and 
design pipeline. Then we transcribed video recordings to ob-
serve key insights from participants’ behaviors for qualitative 
analysis. We transcribed video data based on the context (e.g., 
taking video, using Robiot desktop system, assembly, etc.), 
logging participants’ spoken responses (e.g., “why does this 
look [the] same?”) and description on their behaviors (e.g., P1 
tried to handle 2 DOF at a time). Then we classified this data 
to identify findings as follows. 
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Easiness of using the System - The most participants re-
ported that the pipeline is simple and the user interface is easy 
to use, being able to operate without much background knowl-
edge (Q1-2). Participants commented "I’ve never thought 
that machines can be made through that simple steps" (P4) 
and "I thought designing robotic tools involves heavy mea-
surement, designing and trial and errors. But using Robiot, I 
simply record the video and it automatically did all the work". 
However, one participant reported an important aspect about 
instruction "I won’t know I can rotate and zoom if I am using 
it independently" (P6), which suggest user interface improve-
ment to better inform possible functionalities, what design 
options are available when users perform a design task. 

Accessible Pipeline and Design Assistance - Participants had 
no problem assembling and installing the mechanisms, in-
teracting with objects actuated by the mechanisms (Q3-4), 
reporting "The part is straightforward, I just need to put the 
joints together and tighten screws. Then everything works 
well" (P1) as well as "It’s only few components with clear 
instructions" (P3). Also, all participants were satisfied with 
generated motions, because robotized objects behaved as they 
expected from the beginning of the design. However, one par-
ticipant mentioned "It works well though not very sensitive" 
(P4), raising concerns on the granularity of motion Robiot can 
generate. We will discuss in more detail later in the paper. 

Usefulness of the Tool and Aesthetics - All participant were 
in favor of the tool as they foresee potentials (Q5) to help them 
"customize [my] own things that meet my own needs" (P3), "on 
many objects around me" (P4). Though, participants also have 
higher expectations in aesthetics and design to fully utilize 
the system in their everyday lives, commenting that "Without 
proper design, these modern mechanisms will look strange 
on old-time objects" (P1) and "The design part could be pre-
viously done by specialists, instead of automatic algorithm" 
(P2). We expect addressing concerns around design aspects 
would expand future use case of Robiot, by involving more 
users who care aesthetics in creating custom robotic things. 

Remaining Challenges - There were a few common chal-
lenges among participants. Some participants struggled to 
understand what ‘initial state’ and ‘final state’ meant. In hind-
sight, we realized such wording was too technical, and perhaps 
an alternative expression such as ‘before/after’ would have 
been more understandable. Also, participants did not react 
positively to the sliders that can further adjust design param-
eters and filter a subset of generated mechanisms. Although 
participants were satisfied when finishing the process, they 
did comment on a lack of understanding of how things work, 
such as "I cannot understand why I choose one mechanism, or 
how to choose one option" (P6). In addition to the instructions 
we provided for assembly, in the design phase, animated pre-
views of each suggested mechanism in action and step by step 
instructions for users to manipulate a design interface would 
help them feel more engaged in the design process with less 
confusion. 

DISCUSSION 
In this section, we discuss existing issues, limitations, and 
opportunities for future work. 

Future Technical Work 
There are several technical details Robiot needs to focus on 
in the future. In cases where a user accidentally blocks the 
camera at the beginning or the end of the video, one future 
direction will be employing computer vision techniques to 
detect such occlusion and providing a simple UI for the user 
to select a better, unblocked start/end frame. 

As there are usability issues with sliders in user interface, one 
future direction of user interface will be providing interactive 
tutorials to help users understand the mechanical effect of 
adjusting each slider. 

Scale of Mechanisms 
Robiot suggests mechanisms that best suit user-specified ac-
tion and generate a 3D printable model by a desktop 3D printer. 
The scale of mechanisms and mechanical elements (e.g., size 
of gear teeth and the length of the rack) are dependent on 
the capability of the printer, with common hardware settings. 
Investigating possibilities for the system (1) to design larger 
mechanisms to support furniture scale objects’ actuation and 
(2) to handle granularity of the motion, which is defined by the 
size of mechanical elements, could be an interesting extension 
of our work. 

Camera Angle to Capture Desired Motion 
To best extract series of motion path captured from a video, 
users need to capture the objects in motion orthogonal to 
the movement paths. Because Robiot currently lets users 
design mechanisms in one degree of freedom at a time, motion 
extraction and generating mechanisms are based on 2D, where 
an orthogonal scene best derives the motion. Prior work has 
investigated retaining 3D information when converting 2D 
videos [21, 32], by estimating depth from 2D scenes. Another 
future direction of Robiot is extending its capability to extract 
features for motions with depth in 3D from 2D videos, and 
generate mechanisms in multiple degrees of freedom at a time 
that addresses 3D motions. 

Designing Motion Beyond Given Affordances 
Currently, Robiot helps users to create 3D printable actuation 
mechanisms to perform expected action of legacy objects. For 
example, users are likely to design height adjusting mecha-
nisms for a chair and a rotating mechanism for an old water 
faucet. Users’ choices on actuating mechanisms are decided 
by the existing affordances of a physical interface, it is hard 
to imagine a user would change these affordances, such as 
making a linear switch to attach on a rotating faucet and turn-
ing pulling drawer opening in rotational angle. Reprise is 
an approach that allows users to change the type of required 
movement to perform actions on physical handheld objects, 
particularly for people with fine motor impairments [9]. One 
interesting future direction could be applying this technique 
to generate mechanisms that enable users to alter the type of 
motion to perform a fixed physical task, such as rotational to 
linear motion and vise versa. 

Sensing and Designing Custom Interactions 
The main contribution of ours is an end-to-end pipeline, en-
abling designing fabricable mechanisms; sensing and defining 
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custom interactions, and mapping them to desired actions 
are beyond the scope of this paper. Nonetheless, there exist 
commercial kits that welcome average users to install add-on 
motion sensors to trigger actuating home IoT (e.g., [1, 22]), 
and it becomes common to perform such tasks using con-
nected devices or voice assistance using home intelligence 
devices (e.g., [20]). We demonstrated the feasibility of map-
ping custom gesture interactions using LeapMotion, which 
opens future opportunity to implement novel interfaces for 
end users to define custom user interactions to fine-control the 
motion, given different user requirements. With these inter-
faces, existing work on novel sensing techniques on everyday 
objects to detect unique object touch [51] or direct sensing of 
a human body to detect motion [11] can be applied to enrich 
user experiences in everyday use of robotic things. 

Performing Ungrounded Action 
Recent advancements in ubiquitous computing have presented 
the future vision of moving objects that do not require explicit 
user intention to perform such actions. For example, Nissan 
showcased their visionary self driving cars through smart slip-
pers [42] and chairs [41] that self-organize. It is also viable 
to imagine salt and pepper bottles shaking by themselves, as 
having them on a soup bowl is a common routine. Envisioning 
the future with omnipresent robotic things that accommodate 
people’s everyday routines and expected activities as triggers 
(e.g., sandals coming to you when you come into the door, 
desktop self-adjusting height as you stand up to refresh your 
posture) by predefined activity sensing, Robiot sheds lights on 
a new possibility for end-users to robotize objects at home and 
office to make their everyday life easier towards functional 
home/office. 
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