
Mobiot: Augmenting Everyday Objects into Moving IoT Devices
Using 3D Printed Attachments Generated by Demonstration

Abul Al Arabi
HCIED Lab, Texas A&M University

abulalarabi@tamu.edu

Jiahao Li
UCLA HCI Research
ljhnick@g.ucla.edu

Xiang ‘Anthony’ Chen
UCLA HCI Research

xac@ucla.edu

Jeeeun Kim
HCIED Lab, Texas A&M University

jeeeun.kim@tamu.edu

Figure 1: Using Mobiot, a user can add actuation mechanisms to mobilize legacy objects using 3D printing, for example, (left)
a bottle to water plants while the user is away for vacation. An automated plant-watering mechanism can navigate the floor
to (a) fetch at a scheduled time, (b) refill water from the tap, then (c-e) water the pots by rotating the bottle on the top and
adjusting the height to reach the one on the coffee table. (right) In a kitchen, a user can build smart cooking aids with collective
agent objects, a bowl fetching water, spice cans sprinkling salt and peppers, and a dish and a mug serving ready-to-eat foods
as well as moving a trash bin next to a counter closer to where the food scraps are.

ABSTRACT
Recent advancements in personal fabrication have brought novices
closer to a reality, where they can automate routine tasks with
mobilized everyday objects. However, the overall process remains
challenging- from capturing design requirements and motion plan-
ning to authoring them to creating 3D models of mechanical parts
to programming electronics, as it demands expertise.

We introduce Mobiot, an end-user toolkit to help non-experts
capture the design and motion requirements of legacy objects by
demonstration. It then automatically generates 3D printable attach-
ments, programs to operate assembled modules, a list of off-the-
shelf electronics, and assembly tutorials. The authoring feature
further assists users to fine-tune as well as to reuse existing motion
libraries and 3D printed mechanisms to adapt to other real-world

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9157-3/22/04. . . $15.00
https://doi.org/10.1145/3491102.3517645

objects with different motions. We validate Mobiot through ap-
plication examples with 8 everyday objects with various motions
applied, and through technical evaluation to measure the accuracy
of motion reconstruction.

CCS CONCEPTS
•Human-centered computing→ Interactive systems and tools.

KEYWORDS
Personal Fabrication, Home-automation, Motion planning

ACM Reference Format:
Abul Al Arabi, Jiahao Li, Xiang ‘Anthony’ Chen, and Jeeeun Kim. 2022.
Mobiot: Augmenting Everyday Objects into Moving IoT Devices Using 3D
Printed Attachments Generated by Demonstration. In CHI Conference on
Human Factors in Computing Systems (CHI ’22), April 29-May 5, 2022, New
Orleans, LA, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.
1145/3491102.3517645

1 INTRODUCTION
Recent development in IoT systems is accelerating the transforma-
tion of the smart assistive home from fiction into reality. While we
observe plentiful sensors and controllers that facilitate a new home
with ubiquitous systems, such as the intelligent thermostat making

https://doi.org/10.1145/3491102.3517645
https://doi.org/10.1145/3491102.3517645
https://doi.org/10.1145/3491102.3517645

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Abul Al Arabi, Jiahao Li, Xiang ‘Anthony’ Chen, and Jeeeun Kim

the room habitable automatically, mobile agents have not perme-
ated our everyday life. Everyday objects with mobility can ease
and automate daily routine tasks [2, 58], such as self-organizing
workspace, moving the trash away, self-serving kitchen [10], am-
bulating items to different places, and beyond. Automotive agents
can also support accessible homes, catering elderly care, such as
assisting indoor navigation, auto-serving medicines, foods, drinks
at the preset schedule, and many more [2].

The question "Why are we not living yet with robots?"[31] could
be answered with possible reasons such as: (1) we did not domesti-
cate robots; (2) in reality, substituting all the legacy objects with
commercial robotic platforms is not feasible, (3) end-users tools are
lacking to support designing and customizing smart agents, such
as capturing real-world design requirements, (re)configure them
for fabrication upon varying use-case scenarios using interactive
systems at hand. While prior works tackled robotic-locomotion
by off-the-shelf platforms[13, 30], they are often expensive and de-
signed for domain experts. Also, the rigidity of commercial robotic
platforms does not offer personalizations unless compensated with
an expensive or sophisticated but versatile set of end-effectors. For
example, to create a simple self-shaking spice jar, a user needs to
purchase a multi-DOF robotic arm and perform kinematics pro-
gramming, while there barely exists any accessible support for
end-users to program ambulation from place to place.

The concert of the latest research in end-user programming and
personal fabrication aims at transforming users into makers [39, 53]
by assisting end-users with the process of augmenting personal
belongings [34], building personal IoT devices actuated from legacy
objects [37], auto-generating robotic movements in existing 3D ob-
jects [36], achieving easy programming of smart home appliances
[4], and more. Recent advances have brought the story of "we can
start with today’s existing devices and slowly add on intelligence,
manipulative ability, and function" [42] upfront, leading towards
the future of end-user robotics. These unveil the chapter of ubiqui-
tous robotics and potential participation of end-users in everyday
robotics projects afforded by personal fabrication that scaffolds per-
sonal creative endeavors [33]. Nonetheless, end-users, especially
novices, are not yet introduced to a direct or easy interaction space
that supports the design and fabrication of personal robotics. The
chronicle of adding mobility portrays three salient challenges:

• Most everyday objects are passive in nature, yet existing
solutions (e.g., IoT devices or robotic platforms) are either
not accessible or unaffordable;

• Every individual has different needs, from the physical di-
mension of personal objects to needed motions to accom-
modate unique lifestyles and support creative set-ups of
personalized smart agents;

• Capturing individual design requirements to fabricate and
program personal smart objects is challenging as it implies
that an end-user must obtain custom specifications about the
target object, including its shape, physics, movement paths,
as well as electronics.

We present Mobiot, an end-user toolkit to mobilize everyday
objects by auto-generated 3D printable attachments from a single
demonstration. Incorporating an end-to-end pipeline for fabricating
mobile agents with desired motions (roaming, lifting, and rotat-
ing) and using a commercial smartphone as a medium for both

designing & action authoring, Mobiot automatically captures all
design requirements and decomposes into 3D printable attachment
designs and associated electronics specifications. The user takes a
photo of a target object then mimics the required motion with a
smartphone to record the demonstration. The input image and the
captured data from the cellphone’s IMU sensor then serve to extract
three critical pieces of information: (i) geometry requirements, (ii)
mechanisms to obtain the desired mobility, and (iii) motion plan-
ning. Based on these, Mobiot automatically generates 3D models
that fit the target object & reflect mechanism parameters, displays a
set of circuitry & driving components needed, and finally produces
the code to operate assembled mechanisms with the intended mo-
tion. Following the instructions provided by Mobiot, the user can
print and assemble all the components and load the program that
finally transforms a legacy object into an automotive one. Everyday
objects can achieve reasonably complicated maneuvering tasks by
combining translation (2D roaming on a horizon), rotation, and
lifting motions. Hence, in the context of this work, the word ’mobile’
or ‘mobility’ refers to the one or composition of these motions in
series, applied to various target objects. Mobiot contributes,

• An enabling toolkit for individual home users to mobilize
passive everyday objects at low investment.

• An end-to-end pipeline that enables end-users to build cus-
tom robotic IoT devices from one-shot real-world demon-
stration by automatically capturing design requirements and
generating the 3D printable mechanical components, a list
of electronics, and the program to robotize the objects.

• End-users can easily re/author the motions upon varying
needs without expert knowledge and append, reuse or repur-
pose fabricated mechanisms with flexibility, to step forward
to the future of end-user programming of personal robotics.

2 RELATEDWORK
2.1 Interaction with Personal Robotics (HRI)
Computational design of physical entities in the craft culture can
be found as early as 1998 [53, 66], while recent advances in robotics
and personal fabrication propelled research on the fabrication of
personal robotic devices. Interaction with social robots can exert
a strong engagement with the users [8], and such interactions are
more preferred when the user has control over it [12]. Blossom
[57] discussed three design considerations for end-user robotics,
accessibility: rapid assembly and extension by the user, flexibility:
customizable by the user, and expressiveness: the ability to program
without knowledge barrier.We reflect these provisions, the achieved
movements are defined and executed by the user-selves through the
physical environment on-demand. With 3D printing for accessible
and low-cost fabrication, Mobiot incorporates personal fabrication
and end-user programming of robotics for "destruction, remixing,
repair, or modification of existing artifacts" while they are being used
[33]. Towards the future that anyone can fabricate their personal
projects using accessible and affordable maker technology to adapt
to unique needs [6], we aim to actualize "fabrication can happen
throughout the entire lifetime of creative work"[33] by empowering
end-users to design and fabricate personal robotic IoT devices based
on live interactions with their real-world environment.

Mobiot CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

2.2 Personalizing Smart Systems for
Automated Everyday Lives & Accessibility

Supporting users to build personal smart agents can promote the
domestication of robotic systems that can bring the future of auto-
mated accessible homes to reality. As seen from the prior works,
futuristic home can provide personal health assistance [28], support
independent living [26], or assist in domestic works [19]. iRobot
Roomba, for instance, can aid the daily cleaning routine. Another
scope of smart objects is in the area of accessibility. Mobile plat-
forms and smart objects can remind about daily routine activities,
such as taking medicines or supporting the use of the bathroom by
assisting with navigation (e.g., Pearl[49]), fetching diaper/medicine
box or laundry basket, adjusting a display height to the wheelchair
position, and more.

Many personal robotics and automated systems rely on off-the-
shelf platforms [13, 30, 32], which are often unaffordable, hard to
program for trivial but varying routine tasks per individual, such
as tailoring roaming-paths to deliver a medicine basket from the
kitchen to bedroom in varied floor plans. Moreover, such platforms
are not flexible in size and shape to adapt to geometric dissimilarities
of everyday objects. Mobiot augments objects with custom active
mechanisms that adapt a fair range of geometric deviations.

2.3 Motion Planning by Demonstration
For an end-user, one main challenge to automate or actuate ev-
eryday environments lies in capturing motion requirements and
authoring those actions. V. Ra [13], in this context, provides an
AR-based platform for task authoring using a cellphone. Blockly
[27], and Vipo [30] present visual programming methods to ease
authoring, while Learning from Demonstration (LfD), as explored
by Billard et al. [7] and Argall et al. [3], allows to capture demonstra-
tion and transfer the extracted information to execute the learned
action. Gesture recognition is another considered method of captur-
ing such demonstration [47, 61]. Hand-held devices and wearable
sensors have been often used to record demonstration and program
the actions of a robotic system, such as Neto et al. [40] utilized
accelerometer, Chacko and Kapila [14] used a smartphone with
AR, while Ehrenmann et al. [24], Fischer et al. [25], and Dillmann
[22] used camera and on-body sensors. Aleotti et al. [1] utilized
a 3D tracker to demonstrate tasks in a virtual environment and
actuate a robotic manipulator in real life. Similarly, Wang et al.
[63] utilized wearable sensors to mimic and reauthor the action
of a robotic manipulator in 3D space. In sum, prior works found
programming-via-demonstration accessible for end-users, where
smartphones could be a solution to aid their demonstrations to cap-
ture the desired motion of active objects. We undertake a similar
approach, by using a smartphone to enable easy-capturing of the
desired motion from demonstration then generate key components
for fabrication and programming.

2.4 Reality-based Augmentation of the
Physical World by Personal Fabrication

Several prior works have begun to tackle the challenge of end-users
to augment everyday objects’ functionality using fabrication upon
reality-based design constraints. Deriving information from the
real-world scenario and synapsing the extracted data to augment

physical entities has been practiced by exploiting different tools,
such as AR/VR and 3D scanning. RoMA [48] presents an AR-based
platform to design and 3D-print artifacts or extend an existing item
on-the-fly. Printy [5] embeds circuitry into a 3D model allowing
novice users to fabricate functional objects to augment real-world
objects. Encore proposes three 3D printed attachments methods
on the irregular surfaces of existing, or pre-printed objects [16].
AutoConnect lets users connect two real-world objects, such as a
cup and chair in the desired arrangement [34] while retrofitting
existing objects to extend its capacity has been explored in several
ways with different motivations such as for accessibility purposes,
and more [17, 21, 37, 51]. In a similar vein, Reprise allows users to
specify, generate, customize, and fit adaptations to everyday objects
to enhance usability [17].

More recent works also focused on augmenting objects with ac-
tive mechanisms to support physical tasks. Robiot [37] and Romeo
[36] are the closest relatedworks. However, the domain and purpose
of the motions of ours and prior works are non-overlapping. Robiot
actuates a part of an object with 1-DOF at a time, mostly a short
travel between two fixed points. Yet, the actuation applies to objects
that have actuatable or moving parts. For example, an adjustable
table lamp can be actuated, whereas a coffee mug with no moving
parts cannot be animated. Mobiot, on the other hand, adds navi-
gation and locomotion capability to the whole body. Romeo adds
re-configurable capacity into a 3D object, embedding transformable
mechanisms to perform localized robotic arm actions, while Mobiot
offers to combine both non/localized actions. Also, Romeo relies on
a digital CAD tool for path planning that may present real-world
conflicts, while we capture real-world demonstration at scale.

3 MOBIOT: AN END-TO-END TOOLKIT TO
TRANSFORM EVERYDAY PASSIVE OBJECTS
INTO SMART MOBILE OBJECTS

We present Mobiot, a tool for non-expert users to capture design
requirements simply from the demonstration of the motion and
fabricate, assemble, and code mechanisms to mobilize their passive
everyday objects, as overviewed in Figure 2. We set three design
goals inspired by the classic HCI design principles [52]:

• Low Threshold:Mobiot can enable average users to design
mechanisms that can be attached to everyday objects to
add mobility without expertise and at a low cost. Mobiot
takes the real-world demonstration as a one-shot input then
automatically translates it to mechanical entities.

• Wide wall: Mobiot can support the creation of mobility
mechanisms that fit awide range of everyday objects. Objects
with different sizes, shapes, and weights can be captured
for describing mobility requirements and transformed into
robotic devices according to the user’s demonstration.

• High ceiling: The user can create fairly complex motion
by combining different degrees of freedom and sequencing
actions consisting of three discrete motions at various amal-
gams. For example, a self-watering bottle can travel in a
2D plane, lift, rotate, and then travel to different execution
points. Using several robotic devices together, a user can au-
tomate a fairly complex daily task, such as assistive cooking.

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Abul Al Arabi, Jiahao Li, Xiang ‘Anthony’ Chen, and Jeeeun Kim

Figure 2: Overview of the Mobiot toolkit. A user demonstrates desired motions of an input target object to get ready-to-3D
print mechanisms and controller board components (code and list of electronics) to add mobility to legacy objects

3.1 System Overview
Mobiot links the user’s demonstration to the functional 3D-printable
mechanisms and a program to actuate the needed electronics. As
illustrated in Figure 3, a user starts with Designing from Scratch
or Reusing the Existing. An image of the target object, captured
by the user, is used to run a semantic search through a repository
to retain the 3D model of it. In the second segment of the input
phase, the user runs a provided app on the cellphone to record the
demonstration. The user can put the cellphone on the target object
while mimicking the large-scale movements or simply move the
phone by hand imitating the desired motion. The initial inputs are
exploited to attain three information used to generate 3D printable
mechanisms and a program to run on electronics: (i) geometry
requirements, (ii) mechanisms to realize the desired mobility, and
(iii) motion planning information (detailed in Section 4).

The user’s demonstration is categorized into threemotion classes-
translation, rotation, and lift, depending on the prime movements
captured in different segments. Users can utilize the recognized
motion sequence to compose tasks or fine-tune if necessary, as will
be detailed in Section 4.2. Finally, the user gets ready-to-3D-print
files of the mechanisms and a code to actualize the composed action.
The toolkit also shows the required commercial electronics and
purchase links that user can place an order (detailed in Section 4.3).
The user then assembles everything to convert the inert object into
a smart automated one. We will first introduce various use-case
scenarios to create diverse examples in the following section.

3.2 User Workflow and Design Scenarios
In this section, we showcase a variety of everyday objects that are
transformed to be active in motion to automate the home, following
our design pipeline. Figure 3 shows the needed step-by-step walk-
through of a user. Here we speculate a story of Nancy at home.
Depending on her design scenarios for creating new mechanisms
or editing the existing one to re-purpose, she may go through
different design routes that streamline the required design steps.

3.2.1 Scenario 1. Creating a New Mobility Mechanism for a New
Object: Trash bin. With hands full of food scraps in the kitchen,
Nancywants the trash bin to come near the sink during cooking. Yet,

Figure 3: A step-by-step walk through of the Mobiot design
toolkit. (a)-(e) requires user inputs for design and (f)-(i) gen-
erates outputs for fabrication and assembly.

she does not want this to stay forever in the kitchen during usual
days as it may be stinky. To make a trash bin that travels and returns
to its origin near the door, Nancy first takes a photo of the trash
bin with the Mobiot mobile app, which then automatically fetches
a 3D model from the repository. Then she puts the cellphone on
top of the trash bin, taps "motion record", and drags it to the kitchen
for demonstration. Mobiot records the motion using native IMU
sensors, and after computing the trajectory, shows the recorded
paths on her Mobiot editor. Being satisfied with the trajectory from
the screen, she proceeds to the next step of generating outputs.
Mobiot produces the 3D printable mechanisms to download parts
and a list of electronics that she can order online. She copies the
generated program to write to Arduino micro-controller, and the
self-organizing trash bin is ready to use, as shown in Figure 8a.

Mobiot CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Figure 4: Walk-through to create mobility mechanisms for a trash bin and corresponding user actions. Yellow arrows indicate
input and green arrows indicate output.

Figure 5: Re-using a the mechanism from trash bin example with new authored motion and new target object for laundry
basket, which minimizes input making the design process is much simpler by skipping several stages

3.2.2 Scenario 2. Retargeting an Existing Mechanism with New
Recording: Laundry Basket. Liking her self-organizing trash bin,
Nancy intends to reuse the mechanism for her laundry basket as
they have a similar scale & shape. She wants it to locate near the
bathroom on a regular basis, wait to collect used towels, then move
to the laundry room when it is loaded. She opens the Mobiot app
but chooses the option "Modify existing mechanism" this time. She
selects the "Trash Bin" from the library to load the prior information
saved earlier. Nancy records a new motion by placing her phone
on top of the basket while moving from door to door. The newly
recorded demonstration appears on her editor, from where she
slightly adjusts the trajectory by dragging anchors as she needs
to offset the curve near the corner where a floor lamp sits. This
time she does not need to print anything as there was no change
in the 3D model or the type of motion but overwrites the program
only, which is generated by Mobiot from the re-recorded motion
(Figure 8b). Once loaded, her rolling mechanism now adapts the
laundry basket instead and executes the new motion. Note that
if the laundry basket is larger than the trash bin, Mobiot would
generate a new chassis where the previously fabricated clamps and
motor mountings could be attached as this Retargeting process is
detailed in sections 4.4.1 and 4.4.2.

3.2.3 Scenario 3. Appending New Motions to Existing Mechanisms:
Spice jars. Dreaming of a self-serving robot, Nancy wants spice jars
on the table to be self-serving while her guests will be enjoying the
Christmas dinner. As Nancy has the 3Dmodel of the jar downloaded
earlier, this time she taps the "Upload" button and chooses the
downloaded STL file to upload it toMobiot directly. Then, she places
the spice jar on the smartphone running the Mobiot app backend,
mimicking the desired rotation motion and iterating through the
design process, respectively (Figure 6).

After the fabrication, she realizes that the jar needs to be lifted
while peppering into a bowl, thus she opens the app to choose
the option "Modify existing mechanism." Mobiot displays a list of

prior mechanisms from where she selects the "Spice jar." Then she
clicks "Record a new motion" to record lifting. The new motion
appears in the Mobiot editor, from where she stacks this motion
with the previous one. As the physical dimension of the target object
remains the same while a new motion type is introduced, Mobiot
generates new 3D parts to add lifting and suggests another motor to
manipulate it from the motion data, as well as a new Arduino code
to reflect changes (Figure 7). After attaching the scissor mechanism
below the previously 3D printed attachments, the spice jars are
ready to welcome guests, as shown in Figure 8f. The process of
appending new mechanisms is detailed in section 4.4.3.

3.2.4 Scenario 4. Creating a Complex Series of Motion: Auto Plant-
Watering Bottle. As Nancy plans for a long international trip to
attend a friend’s wedding, she wants to make an auto-watering
system to keep home plants alive while she is gone. The water
bottle needs to start its weekly journey from the faucet to fill water,
move through several corners of the living room and to the balcony,
tilt near a pot to pour water. As the heights and position of the
different pots differ, the mechanism also needs to lift and lower the
bottle to reach desired spots. Nancy records the series of motions
using the Mobiot app running. The motion segments are captured
accordingly, enabling Nancy to download all parts that constitute
all three mechanisms for roaming, lifting, and tilting, and the code
to operate these motions subsequently for the final assembly of
the self-watering bottle as shown in Figure 8h. While she is away,
she can also use her cellphone to trigger watering in addition to
automating it at the scheduled time.

3.2.5 Scenario 5. Self-serving Kitchen with Collective Agents. Dur-
ing busy days, Nancy wants to have her breakfast ready while
sitting in front of her laptop checking emails. She dreams of a futur-
istic kitchen where the liquid egg is to be poured into a bowl (Figure
8e), some spice to be shaken and sprinkled, then the self-mixing
bowl to be self-poured to the pan. The breakfast table will serve

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Abul Al Arabi, Jiahao Li, Xiang ‘Anthony’ Chen, and Jeeeun Kim

Figure 6: Creating a tilt motion for a spice can

Figure 7: Appending a new motion (lift motion) to an existing mechanism that is added to a spice can

condiments and a milk carton and contain a self-organizing coffee
cup (Figure 8c) and a platform to take her bread or salad bucket
with self-served dressing on it. She records motions for each of the
items, uploads them to Mobiot, collectively creating a smart cook-
ing assistance that yields the 3D printable parts, a list of electronics,
and the code for individual items (See section 4.2). She then 3D
prints and assembles all the parts and attaches them to each target.

In the following section, we detail how the user inputs, in accor-
dance with the possible use-case scenarios, are extracted to retrieve
needed information to generate 3D printable mechanisms, the list
of electronics, and the program to run them.

4 IMPLEMENTATION
Mobiot involves several steps for adding mobility to everyday ob-
jects, for example, extracting features to generate 3D printable parts
using parametric modeling and programs.

4.1 Capturing Requirements by Demonstration
4.1.1 Geometry Information. To create 3D printable mechanisms
that fit the target object, it is crucial to obtain geometry informa-
tion for appropriate parametric design. Mobiot design tool contains
a repository of 3D models, mainly derived from Shapenet [15].
When the user takes and uploads a photo of the target object, Mo-
biot passes the image through YoloV4 [9] object detection model.
From the detected object class, the tool makes a semantic search
in the repository and fetches a corresponding 3D model (Figure
3b). Optionally, a user can grab a 3D model of the target object
from any public repository and provide it as input directly. As such
open repositories are actively being populated with 3D models of
many real-world objects, it will soon become a better approach to
guarantee the accuracy of obtained 3D geometry.

4.1.2 Motion Information Classification. A user’s motion demon-
stration is captured using the native IMU sensor of a smartphone,
consisting of accelerometer and gyroscope, through a sensor data

Figure 8: Examples generated by Mobiot: (a) Mobile trash
bin, (b) Mobile laundry basket re-using the mechanisms
from the trash bin, (c) Self-organizing coffee mug, (d) Assis-
tive cooking bucket, (e) Adjustable webcam stand, (f) Self-
serving beaten-egg bottle, (g) Self-shaking spice jar, (h) Auto
plant-watering bottle

logger application on the Android platform [56]. The app is modi-
fied to capture the IMU data at a maximum possible refresh rate that
typically varies from 100Hz to 500Hz depending on the sensor type.
The required data types are gyro, accelerometer, linear acceleration,
gravity, magnetic field, rotation vector, and timestamp. A user can
upload the recorded motion data stored in the cellphone directly to
the Mobiot by using the app or the user interface that will become
the initial input for the mobility analysis (Figure 3c).

Mobiot CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Figure 9: Processing of horizontal motion data (a) Raw posi-
tional data obtained using RONIN [29] (b) Moving average
filtering and finding the anchor points.

Figure 10: Segment of the motion data (a) Raw linear accel-
eration data along Z-axis (b) Filtering and thresholding.

The next step is to classify and quantify the demonstration (Fig-
ure 3d). Currently, Mobiot breaks down the demonstration into
three most common motion types- translation, rotation, and lifting,
by searching the axis where the most salient movement occurs,
which is detailed as follows.

Translation. The translation motion is a 2D movement over a
horizontal surface. We estimate the 2D trajectory using RONIN [29],
a machine learning-based approach for dead reckoning. After cal-
culating the total distance traversed and comparing this value with
a threshold, the requirement for a horizontal motion is determined.

The raw trajectory (Γ𝑟(𝑥,𝑦)) of the horizontal motion contains
noises (Figure 9a) due to sensor accuracy and user’s wavy hands.
The first step of processing this trajectory is passing the data
through a low-pass moving average filter (Figure 9b) as per equation
1 to obtain a smooth trajectory (Γ𝑓(𝑥,𝑦)).

Γ
𝑓

(𝑥,𝑦) [𝑘] =
1
𝑀

𝑀−1∑
𝑖=0

Γ𝑟(𝑥,𝑦) [𝑘 − 𝑖] (1)

For our application, we consider window size (𝑀) to be 5% of the
trajectory data length. The second step of processing the trajectory
data is fitting piece-wise linear segments as they can provide anchor
points to allow fine-tuning. We consider a distance and tangential
angle threshold for finding the anchor points from the smoothed
trajectory (Γ𝑓(𝑥,𝑦)). If any two consecutive line segments fall under
this criteria, the corresponding points are considered to be anchor
points as shown in Figure 9b. The obtained trajectory with the
anchor points is then presented in the interface (e.g., Figure11d).

Lifting. Estimation of the lift motion from the demonstration
is subjected to additional computation. We first grab the linear

acceleration data along the Z-axis as shown in Figure 10a. It is
obtained from Android’s sensor fusion algorithm that removes the
gravitational component from the acceleration data. This data is
then passed through a moving average filter and thresholding (See
Figure 10b). Afterward, we perform a double integration of the
filtered data to estimate the amount of lifting height. Finally, we
use a binary threshold to detect whether and where the lift motion
was triggered. The amount of lifting height is presented as motion
blocks in the user interface (See Figure 11b).

Rotation. From the IMU sensor, we obtain the rotation vector
at a given time to estimate the roll or pitch of the cellphone. The
rotation vector represents the cellphone’s orientation about x, y,
and z axes in the form of quaternions that we convert to Euler
angles. If the estimated roll or pitch exceeds a threshold angle, it is
classified as a rotation motion and presented as motion blocks in
the user interface.

Figure 11: Mobiot interface consists of (a) fetched 3D model,
(b) detected Motions’ list as library, (c) additional informa-
tion (e.g. weight), (d) task design and preview, (e) appended
motions and parameter tuning and (f) options for output.

4.2 User Interaction and Task Design
After the classification and quantification of the demonstration,
such as automatically segmenting the anchor points of the hori-
zontal motion, this information is represented as different motion
blocks in the interface (See Figure 11b). At this point (Figure 3e), the
user can (i) import different motion blocks to the scene and manu-
ally design complex tasks, (ii) proceed with the motion sequence
automatically recognized, or have a combination of both.

4.2.1 Manual Task Designing. The user can manually design a
task from motion blocks, which represent individual motion types
found in the user’s demonstrations. Once a block is imported to
the scene, the user can append other motion blocks if needed. For
instance, the user can import a translation block into the scene,
which displays anchor points of the trajectory to the user (e.g.,

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Abul Al Arabi, Jiahao Li, Xiang ‘Anthony’ Chen, and Jeeeun Kim

(Figure 11d). Afterward, the user can tune anchor points if needed
or add new anchor points to the trajectory. Then, other motion
blocks such as lift or rotation can be appended to different anchor
points (Figure 11d and e). The user can tune the amount of lift or
rotation appended to each anchor point and drag-drop to organize
their sequence, add pause or delay in between different actions, and
choose to execute them either respectively or synchronously.

4.2.2 Automated Motion Sequence. During the motion classifica-
tion, Mobiot keeps track of the spatial information of different
motions. If the user author motions with the automatic recognition
of sequence, the editor arranges motion blocks on the scene as they
appear in the demonstration. This sequence may contain errors and
noise generated by the natural movements of the body, requiring
additional tuning. Once the sequence is auto-placed in the task
design scene, Mobiot allows the user to optionally fine-tune pa-
rameters, add more motions blocks to different points, re-arrange
them, remove any unwanted motion recognized by the process. The
automatically imported blocks are by default executed sequentially,
but can be also executed synchronously by selecting targets.

4.2.3 Action Module Designing. In our daily activities, many tasks
consist of modular actions, such as mixing, pouring, etc. Design of
such is enabled by integrating multiple low-level motions. Using
Mobiot’s interface, a user can arrange different motions in series
to obtain a particular action and save it to the library. For instance,
the user can sequence alternating clockwise and counterclockwise
rotational motion to have a mixing action. Some other examples
can be synchronous lift + rotate = pouring, or lift then rotate multiple
times = shaking. Once saved as modular action, a user can re-use
them and adjust parameters to modify their actions. In the future,
these high-level action descriptions can also be brought under a
repository to ease the task designing.

4.2.4 Additional Information about Target Object. The scale of the
3D printed mechanisms and electronics might vary upon the weight
of a real-world object, as the heavier will need stronger motors.
Mobiot asks a user to input the approximate weight of the object
(Figure 11c) as the torque is computed based on it. Additionally, the
weight also affects the parametric adjustment of 3D models, such
as defining the size of motor mountings, the number of gears in the
lifting mechanism, the thickness of the clamps.

4.3 Generating Outputs
The geometry of the object and the motion information are finally
mapped to generate the outputs (Figure 3f to i). Mobiot provides
the user with four outputs: (i) 3D printable parts of the mechanisms,
(ii) a list of electronics, (iii) Arduino code to program the device,
and (iv) assembly instructions.

4.3.1 Generating 3D Models. At this point, Mobiot acquires suffi-
cient features to generate the 3D models of the mechanisms. The
target object may be equipped with one or more mechanisms to
replicate the desired mobility from the user demonstration. Mobiot
uses a parametric design approach based on three main design
libraries to reflect the acquired parameters into the 3D models. Fig-
ure 12 depicts three example parametric designs to illustrate the
motion mechanisms and driving components.

Figure 12: Realizing motions with three parametric designs.
(a) Forward using the differential drive, (b) Taking a turn us-
ing the differential drive, (c) Adjusting the height of the lift-
ing mechanism, (d) Rotating to a particular angle.

Differential Drive Mechanism. The translation motion is re-
alized by a differential drive mechanism (Figure 12a). The geometry
of the target object determines the size of the chassis, and the weight
determines the required torque for mobilizing the platform. The
torque is given by 𝜏 = 𝑟 ∗ (𝑚/2) ∗ 𝑔 where 𝑚 is the mass of the
object, 𝑔 is the gravitational acceleration, and 𝑟 is the radius of the
wheel. We match the required torque against a database built from
the information acquired from the motors’ dataset. Mobiot chooses
motors with 20% more torque than required to incorporate other
items within the mechanism. Afterward, supporting elements (e.g.,
motor clamps) are generated using Mobiot’s parametric templates.

Scissor Lift Mechanism. The lifting mechanism is a modified
version of the scissor lift system (figure 12c). Counter gears, driven
by servo motor(s), are used for the scissor action. Additionally, para-
metric linkers are used to achieve the desired height. The selection
between a single-sided or double-sided lifting mechanism and the
strength of the linkers are determined based on the object’s weight.

Rotation Mechanism. The rotation mechanism is also oper-
ated by a servo motor. A clamp holds the object while two sup-
porting poles over a base (Figure 12d). The torque for rotating the
object is calculated in a similar manner as described earlier. The
clamping point is considered to be the center of gravity of the object,
estimated from the object’s 3D model. We borrowed Encore[16]
to define clamps by circumference of a cross-section of the object.
Once all the models are generated, ready-to-print STL files are
created for downloading and 3D printing (figure 3f).

4.3.2 Electronics and Driving Components: After generating the
3D models, Mobiot rations required motors and controllers and
presents the user with a list of items along with their store links
(figure 3g). We use Arduino Uno, one of the most common open-
source hardware, as the main controller. For the differential drive,
we utilize stepper motors- NEMA17 (for mid and high torque ap-
plications) and 28BYJ (for small and lightweight operations). We
choose the open-source Arduino-CNC shield, which is stackable to
the Arduino board, to drive the steppers. For rotation and lifting
mechanisms, we use servo motors (MG90, SG5010, and MG996R by
Tower Pro) from low to high torque. For WiFi connectivity, we use
a low-cost ESP8266 IoT-enabled module.

4.3.3 Transferring the Motion Information via Auto-Programming.
As the 3D models are generated based on parametric designs, it
covers all the critical information to process themotion data.Motion
data is first parsed into motion commands then embedded into an
Arduino Sketch code.

Mobiot CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Parsing the anchor points. We iterate through all anchor
points and calculate the distances and tangents from point to point.
The number of motor rotations required to traverse a certain linear
distance depends on the wheel diameter (𝑑𝑤) as in Figure 12a, while
for taking any turn, the distance between the wheels (𝑙𝑤) is needed
(See Figure 12b). For simplicity, we neglect the frictional coefficients
and wheel slippage. Considering 𝑑𝑤 , 𝑙𝑤 , and steps per revolution
of the motors, Mobiot calculates and sequences of steps required
to proceed with linear distance or taking any turn to go from one
anchor point to another.

Achieving the lifting height. The lifting mechanism com-
prises gear and linker stages as depicted in Figure 12c. The total
lifting height (ℎ𝑙) consists of small step heights (Δℎ). Considering
the linker length (𝑙𝑔) and adjusting the angle (\𝑠 = 𝑎𝑟𝑐𝑠𝑖𝑛(Δℎ/𝑙𝑔))
of the servo, the desired lifting is achieved. This angle value is then
parsed into a command string.

Executing the rotation motion. As servo motors can parse a
given rotation angle (\𝑟), it can be directly appended to the com-
mand.Mobiot then integrates the individual commands by encoding
them with identifier keywords- go (g), turn (t), rotate (r), lift (l),
delay (d), etc., to form the final command string. Mobiot patches
this to a prebuilt code template that contains necessary functions
to drive the motors. This can be copied and flashed directly to the
Arduino board (Figure 3h) using the Arduino IDE. After program-
ming and assembling the mechanism by following the provided
instructions, the user needs to place it to the location where the
demonstration was taken. Once a motion execution is done, the
mechanism can be triggered to retain its original states, such as
rendering the translation motion in reverse order to go back to the
origin or adjusting the servo angle to reset the vertical position.

4.4 Reusability of Produced Mechanisms
After adding mobility to an object, Mobiot registers it to the library.
Exploring the library, a user can alter the functionality of an existing
mechanism to adapt it to different use-cases. Mobiot offers three
ways of re-utilizing an existing mechanism- (i) reusing an existing
mechanismwith different motion settings, (ii) retrofitting a different
object to an existing mechanism, and (iii) stacking newmechanisms
to the existing.

4.4.1 Re-authoring Motions. To reauthor an existing mechanism, a
user can record a new demonstration using Mobiot to convert it to
machine commands. A laundry basket which initially designed to
travel from the bathroom to the washing room can now roam from
the bedroom in the early morning to the kitchen during breakfast
to collect table clothes (e.g., Figure 5).

4.4.2 Retrofitting. Retrofitting lets a user attach a new object to
an existing mechanism by replacing some parts of the mechanism.
The process starts by capturing the geometry information of a new
object that Mobiot offsets geometric changes from the previously
stored information. If the new object is larger or smaller than the
previous one, Mobiot generates new attachments or chassis cor-
responding to the changes. For example, if a rotation mechanism
designed for a bottle is to be replaced with a spice jar in a shorter di-
ameter, Mobiot will only generate a new clamp and base, assuming
the weight does not significantly deviate from the earlier target.

4.4.3 Appending New Mechanism. As demonstrated in the earlier
spice can example, a user can append new mechanisms to the
existing one. Additional mechanisms are determined from a new
demonstration by comparing it to stored information. The user
can achieve this through two approaches, either by recording a
full demonstration, or by recording the segment that needs to be
appended. After classifying the motion types, Mobiot presents the
user with newmotion blocks, thus the user can design a new task or
proceed with the automatically determined sequence. However, the
stored motion information remains temporarily in the motion list
until the user proceeds with the output phase. If a user choose to
go with new motion recording only, he appends it to the previously
stored motions manually through the user interface. As Mobiot sees
the requirement for supporting a newmotion, it provides additional
3D models, generates new motion commands from the new data,
and lists additional electronics if added more.

4.5 Schematics and Constraints
In this section, we discuss configurations, schematics, and impossi-
ble cases by reviewing the scenarios introduced in Section 3.2.

4.5.1 Speed settings for the platforms (Scenario 1). In our test ex-
periments, we observed a trade-off between the speed and torque
of the stepper motors. To compensate variables for novices and
ensure proper motion execution by the actuators, we use a prede-
fined speed-set for motors. Thus, in scenario 1, changing the speed
of the trash bin through the user interface is currently not possi-
ble. Presently, users have an opportunity to add latency or delay
between different motion executions. Users with basic knowledge
of Arduino sketch programming can change speed parameters by
following the comments in the provided code.

4.5.2 Authoring new motions to retarget (Scenario 2). Mobiot inter-
face offers two prime configurations of (i) adding new motions and
(ii) modifying existing mechanisms to reuse, re-author, or retrofit.
Currently, the interface does not allow appending multiple transla-
tionmotion demonstrations. In this case, the user will need to record
a whole new demonstration instead. Once a saved mechanism is
updated with a new demonstration and generate new outputs, it
replaces the prior information. While retrofitting a platform, the
weight need to be similar. For example, in scenario 2 of section 3.2,
if the weight of the laundry basket differed significantly from the
trash bin, the desired motion would not be executed successfully.

4.5.3 Stacking mechanisms to append newmotions (Scenario 3). The
generated mechanisms can operate in combination or standalone.
However, our current assembly hierarchy does not allow (i) append-
ing a lifting mechanism on the top of a rotation mechanism due to
the limitation of supported motion and authoring types, and (ii) the
translation motion mechanism on the top of other mechanisms as it
is not practical. Also, the same type of mechanism is not currently
supported to be stacked. It leads to a total of 7 configurations or
combinations for the mechanisms. Thus, in scenario 3, if Nancy
stacked the lifting mechanism on the top of the rotation mechanism,
it would not be possible to execute the intended motion.

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Abul Al Arabi, Jiahao Li, Xiang ‘Anthony’ Chen, and Jeeeun Kim

4.5.4 Empty object vs. loaded object (Scenario 4). While entering
the additional parameter- weight, the user needs to input the max-
imum possible weight of the object. For example, in scenario 4,
entering the weight of the empty bottle in the interface may lead to
malfunction or topple the mechanism when the motion is executed
in real-life with a bottle full of water.

4.5.5 Availability of 3D models (Scenario 5). Currently, we fetch
a 3D model from the 2D image from a pre-built repository built
from the Shapenet [15] models mostly. Thus, the number of models
is limited in our benchmark. Additionally, objects with the same
taxonomy may vary in size and shape. Enriching the number of
models in the repository and adding more classes to the machine
learning model can resolve the issues. Alternately, users can down-
load 3D models of the target object from any repository and feed
them into the tool. Besides, users can use substitute models that are
coherent in their geometry requirements. For example, if Nancy
took a photo of a mayonnaise bottle in scenario 5 that does not exist
in this benchmark, she could use the 3D model of a water bottle
instead as they share identical shapes and sizes. Future solution to
this constrain is discussed in section 6.3.

4.6 Limitations in Hardware Generation.
4.6.1 The relative scales and attachment mechanisms. Although
the scale of the mechanisms is flexible depending on the target
object’s physical dimension, the minimal size is limited by motors
and electronics to be assembled. The augmentation of the trash
bin or laundry bucket seems natural, while attachments appear
relatively bulkier for a spice jar or other small objects. With tiny
commercial driving actuators such as Toio become more accessi-
ble, addressing the scale limitation could be a near-future work of
Mobiot. Additionally, shells for electronics can be inherited from
Retrofab [51] or Desai et al. [20]. To tightly hold the object on a plat-
form, we use the clamps generated as in section 4.3, and a boundary
across the translation chassis. For toppled or non-uniform objects,
AutoConnect [34] could enhance the capacity.

4.6.2 Height accuracy retained from acceleration. In practice, step
counting [44, 45] and double integration [38, 41] are popular meth-
ods of dead reckoning and trajectory estimation from IMU sensor.
RIDI [67] shows a higher benchmark in the context of the double
integration method, yet, it can not fully compensate for the accumu-
lative error in double integration. Step-counting based positioning
systems do not fit our application. Android Tango devices have
an inbuilt positioning system, but such devices are not ubiquitous,
which made us settle down to RONIN. However, it provides the
2D position of the audience with a non-tango device. As a result,
the lifting height cannot be determined precisely with the existing
methods. As a workaround, we use the linear acceleration data
to make a rough estimation of the lifting height via the double
integration method, which suffers from accumulative errors.

4.7 Design & Authoring Tool
We used Django, a Python-based web server for the backend. We
developed the front-end as an web application using javascript,
integrating Three.js for visualizing and rendering scenes and 3D
models. OpenSCAD is used for parametric 3D designs.

5 EVALUATION
5.1 Technical Validation
Throughout the technical validation, we investigate how accurately
the tool can reflect the demonstration, origin of different issues or
inaccuracies, and how they can impact the usability of the mecha-
nisms. Mobiot relies on three salient movements and makes differ-
ent combinations to achieve various actions. Hence, we evaluate
the involved cardinal motions: translation, rotation, and lifting, as
we can segment a combined motion into these three categories.

Apparatus, Tasks, and Settings. (i) The trajectory estimation
of the translation motion relies on RONIN[29], and hence we are
focused on evaluating the parsing of the trajectory by the mecha-
nisms. To find the accuracy of the parsed translation motion, we use
a marker to draw the ground truth with known distances and angles
and equip a translation motion mechanism with a marker (Figure
13a). Afterward, we upload the trajectory data manually to the Ar-
duino board and let the mechanism parse the command data. The
first type of horizontal traversal covered 200cm and two right-angle
turns. Additionally, we let the mechanism traverse 400cm straight

Figure 13: (a) Test setup to evaluate translation motion ac-
curacy, ground truth and traversed trajectory (b) estimated
angle compared to the actual angle for rotation and (c) esti-
mated height compared to the actual height for lift motion.

with a rated load for the motors. For each criterion, we consider
five iterations with two additional configurations- (1) repositioning
to the origin before a trial and (2) letting the mechanism return to
the origin on its own.

(ii) The rotation and lifting mechanisms use servos that parse
the given angle with their feedback system, and hence, in these
cases, we focus on evaluating the estimated parameters. For these
criteria, wemove a cellphone between two known points, record the
motion, and let Mobiot quantify the demonstration. We recorded
the motion of a cellphone by rotating it to known angles (45°, 90°,
180°) with ten trials for each angle. And, we lift the cellphone to

Mobiot CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

known heights (10𝑐𝑚, 20𝑐𝑚, 30𝑐𝑚, and 40𝑐𝑚) and recorded the
motions of ten iterations for each height.

Results.Throughout five iterations of 200cm traversal, themech-
anism lagged by 6𝑚𝑚 to 9𝑚𝑚 from the endpoint with a standard
deviation of 1.36. With the object loaded, the displacement of the
mechanism was found from 2𝑐𝑚 to 8𝑐𝑚 with a standard devia-
tion of 2.24. When the mechanism was not re-positioned to the
origin, the deviation accumulated. As a result, the platform can
completely deviate from its origin point after multiple uses. These
deviations originate from several points. One critical reason is the
wheel-surface slippage. Currently, we use TPU or rubber-based
tires for wheel-surface contact. But, as the controller estimates the
traversed distance based on the step count and wheel geometry
and the stepper motors do not have odometric feedback, the slip-
page can not be fully compensated. Besides, there is a tolerance
limit of how accurate the 3D printer can print the models, such as
wheels. Even a slight deviation in the diameter can result in larger
dislodgement with long traversal. Hence, the platform needs to be
re-positioned to its origin after several uses. We discuss this further
with possible solutions in section 6.6.

Figure 13b compares the estimated angles (roll or pitch) of the
recorded motion to the ground truths. The standard deviations
for 45°, 90°, and 180° are found as 0.83, 0.20, and 0.21 with mean
values 45.7°, 89.25°, and 179.53° respectively. Cellphone’s sensor
fusion algorithm provides highly accurate rotation vector data. In
daily life activities, movements are more empirical than precise
(e.g., shaking a spice jar), and such slight deviations are barely
perceivable to have any substantive impact on usability.

As the accelerometer data contains heavy noise, integrating
twice lets the noise accumulate and ultimately leads to a high devi-
ation. As illustrated in Figure 13c, for 10𝑐𝑚, 20𝑐𝑚, 30𝑐𝑚, and 40𝑐𝑚
heights, we observed standard deviations 1.52, 1.53, 1.94, and 1.87
with mean values 10.1𝑐𝑚, 20.24𝑐𝑚, 29.89𝑐𝑚, and 38.22𝑐𝑚. Such
deviations can impact the usability of the platforms for subtle ap-
plications, such as the water bottle may over-spill water, while it
can be relatively ignorable for serving foods where human inter-
vention can compromise. Currently, the user interface provides the
opportunity to tune the motion parameters, and hence, the user
can compensate for the issue through trials. As commercial smart-
phones are getting equipped with better positioning sensors for
AR and VR (e.g., Android Tango devices), we expect to have better
benchmarks in 3D positioning in the future.

5.2 Experts Interview
We interviewed three experts to elicit their feedback, recruited
from the first author’s network, with four years of experience in
fabrication (E1), four years of experience in the field of human-
cognition analysis (E2), and eight years of experience in software &
machine learning (E3). We introduced the toolkit overviewwith one
example demonstration using the fully fabricated cooking bucket
(Figure 8d). Interviews with E1-2 took place in person, and we
let them use the user interface, whereas the interview of E3 took
place online to whom we showed the demonstration of the user
interface. Overall, all three experts appreciated the features and
user-centered workflows, noting "If the end-user only has to just
connect, I think that’s a pretty good approach. If you can assemble
the furniture, you can also do this" (E1), "Like movies, [...] in a room

there’s magic happening everywhere, everything is coming to your
hand. These things are not happening now, so we should help or we
should be participating in those things so that, that future can be
achieved faster" (E1). All also revealed limitations and suggestions
for future improvements towards their future visions for ubiquitous
personal robotics as we summarize the key findings:

Cellphone as a Design andAuthoring tool. All experts liked
the use of the cellphone as a design and authoring tool, as "I think
it would be the easiest because we use cell phones every day" (E1). As
they all are aware, modern smartphones have a decent amount of
sensors that can be utilized to capture various activity data just by
one-shot demonstration, while they are not necessarily required
to know all details about the types of sensors or data types they
need to acquire for fabrication. With the ongoing development of
the smartwatch and other unobtrusive smart wearables, we believe
that the user’s embodiment can also be a potential design input.

Fabrication cost. E2 expressed concerns about Mobiot’s feasi-
bility regarding the fabrication cost, thinking of the overarching
goal of lowering the access of personal robotics fabrication. "Is it
also considering the cost of that product and suggesting?" (E2). As
the experts referred, the fabrication cost is one of the critical fac-
tors while developing the mechanisms, that we lower the cost by
leveraging consumer-grade 3D printing as the main method to cre-
ate the mechanisms. While the cost is subjective to the valuation
of functionality and personal preference, we aim to portray the
fabrication cost along with the bill of materials in the future user
interface to let the user judge the cost.

Sensor integration. Experts also pointed to the necessity of
sensor integration, as augmented objects using Mobiot will be oper-
ating in the real-life context where there could be many changes in
the daily context, such as new obstacles placed in the pre-planned
path or temporary obstructions in the trajectory. "One of the ma-
jor things about any human-robot interaction is safety. So you need
something, like, some kind of safety sensors" (E2). "It would be nice if
the system is smarter to get signals from my room. Like, the obstacles
that you are going to avoid" (E3). While the sensor integration can
significantly improvise the functionality of the mechanisms, it also
poses new design requirements to locate sensors without hamper-
ing the functionality of prior electronics. We further discuss the
future integration plan for sensors in detail in section 6.4.

Validation and Simulation. Experts were curious about mo-
tion contextualization in real-world and validation, speculating the
possibility and feasibility of simulation. "Is there any verification
process if the things will actually work or not?" (E2).While we sim-
ulate the motion in the user interface, E3 suggested integrating
floor plan or 3D model of the arena, "You can import the map of
the room into the software so that I can visually see the movements,
like creating a 3D model of the room" (E3). We also present a further
discussion on this in section 6.5.

6 LIMITATION & DISCUSSION
6.1 Personal Robotics and Mobiot
While we observe the adoption of robots in industries and man-
ufacturing, home with smart agents is still in speculation. Two
important questions are to be addressed: "what might a home robot
do?" and "what would it look like?[42]". As observed in autonomous

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Abul Al Arabi, Jiahao Li, Xiang ‘Anthony’ Chen, and Jeeeun Kim

lawnmowers or vacuum cleaners, one core functionality of every-
day robots is to assist in daily repetitive tasks making users focus
on other productive activities. Instead of reckoning sophisticated
humanoid robots or Androids that will magically carry out all of
our works, we can visualize the future of everyday robots as tangi-
ble devices delegating routine tasks. While users are empowered
with adding actuation (e.g., Robiot[37]), manipulative capacity to
3D printable objects (e.g., Romeo[36]), or control to mechanical but-
tons (e.g., IoTIZER[18]), Mobiot juxtaposes the addition of mobility.
That being said, an integrated system soon will unfold the story
of everyday personal robots being designed and fabricated by the
end-users.

6.2 DIY Robotics and Mobiot
The discourse analysis of Roedl et al. [53] depicts a recent shift in
HCI research, where the paradigm of end-user system design is
increasingly focusing onmakers rather than passive users. Wakkary
and Maestri [62] portrays how family members as everyday design-
ers augment, adapt, and modify their surroundings, which ground
the motivation of supporting end-users with tools and technology
that is also relayed by Buechley et al. [11] and Kuznetsov and Pau-
los [35]. From trusting the user’s capability to design, assemble
or repurpose their furniture, we are marching towards co-design
and fabrication of custom products as already witnessed in DIY
headphones [50], co-manufactured mechanical devices[46], custom
assistive design of IKEA furniture [60], and more. The process of
augmentation and customization adds personal value, attachment,
and individual meaning to the items that elongate the duration of
adoption and urges persistent care over time [43]. As a result, the
cultivation of these acts contributes to the betterment of social and
environmental aspects as well. Being inspired by these findings
and gradually filling the blanks of users’ demand for supporting
various physical tasks, we also expect new and existing repositories
(e.g., Thingiverse) to encompass everyday robots for mass users.
Instead of being a consumer waste of the past, we envision today’s
everyday legacy objects being transformed into everyday robots of
the future.

6.3 Automatically Recovering 3D Model
Geometry from 2D Photo Input

In case the semantic search of the target object fails, we prelimi-
narily integrated photogrammetry techniques to generate the 3D
model of the target object. Works such as Pixel2Mesh++ [64], 3D
model generation using GAN [68] provide prospective ways of gen-
erating 3D model of an object from 2D images. However, 3D models
generated from suchmethods may not be precise and contain noises
to create perfectly fitted 3D printable mechanisms. Besides, there
are everyday objects that share identical shapes. Such as, the 2D
geometrical mask of a water glass can be identical to the mask of a
laundry basket. Thus, as a current solution, we utilize a machine
learning technique instead to identify the object and run a semantic
search for fetching the 3D model of the target object. Cellphones
with lidar sensors (e.g., iPhone 12 Pro) prophesize a handy 3D scan-
ning. We expect to re-integrate the automatic recovery of 3D mesh
when advanced methods with higher benchmarks are available.

6.4 Sensing to Adapt to Dynamic Changes
Sensing enables users to add custom interactions to different in-
terfaces. IoT-based sensors can allow remote sensing and action
mappings, such as automatic lights and fans [55], smart doors [23],
etc. Commercial IoT devices, such as Google Nest, allow users
to control inter-connected home appliances via voice commands.
LeapMotion or Kinect enables gesture sensing for custom action
mapping. Platforms, such as Blynk or Adafruit IO, let novices add
IoT control or sensing using opensource hardware. Currently, we
utilize an IoT-based WiFi module (ESP8266) and a web interface
for triggering the actions. Our choice of open-source hardware and
WiFi module leaves the floor to the user for IoT-based sensors inte-
gration and action mapping. We assume users can eventually adopt
these commercial sensing and triggering solutions. Considering
such, sensing and custom action mapping is left out of the scope
of this work. The inclusions of onboard sensors, such as LiDAR
will make the mechanisms smarter, as they can facilitate safety and
obstacle sensing. A native camera can facilitate visual monitoring,
while smoke or CO sensor can provide an additional layer of safety
and feedback. Moreover, recent 3D printable sensing systems (e.g.,
[54, 59, 65]) could be considered to embed such sensors within the
mechanisms in future works.

6.5 Motion Contextualization
As also recommended by one expert, we plan to embed 3D scanned
floor plans of the target areas that are increasingly easy to integrate
with advances of native sensors in modern smartphones. It will
help visualize the trajectories in a real-life context providing a
more accessible design scenario to the user. The recent inclusion
of lidar sensors in cellphones and AR-based apps to measure the
area (e.g., Apple AR Ruler) pave the way for 3D scanning of a
scene and generating the 3D floor plan of an arena. Simulation of
the motion in a virtual/augmented reality environment can also be
enabled in such a scenario so that end-users can validate the outputs
before fabrication. Such integration can facilitate other accessibility
applications, such as guided navigation for elderly care to navigate
different places (e.g., bathroom, kitchen, etc.) from remote places
by caretakers as well.

6.6 Limitations in Motion
Types & Authoring. Mobiot currently incorporates three types
of motions. Actions of everyday objects may require more motion
types, such as twisting, curved lifting, sliding, etc. Mobiot breaks
down the demonstration into pieces, based on the salient motions
observed in different axes. For example, a curved lifting will be
reported as a lift motion and a separate rotation motion, thus, fitting
them into realizable types. Additionally, any accidental motion
falling under the conditions described in section 4.1.2 will be present
in the interface. However, the user has the opportunity to remove or
tune any unwanted motion, or re-record the motion otherwise. We
aim to stretch the type of supported motions. Also, action triggering
in compound motions (e.g., translation and rotation together) is
accomplished only using spatial programming that can be extended
to sensor or time-based triggering to allow inter-agent collaboration.
As the triggering methods are out of the scope of this work, we
leave this as a future improvement.

Mobiot CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Initial placement & Deviation in Translation motion. As dis-
cussed earlier in section 5.1, the translation mechanism needs to be
repositioned to the origin after multiple uses due to possible devia-
tions over time. The frequency of repositioning a platform depends
on several factors, such as the amount of distance traversed by it, its
size, and path clearance. With a prolonged trip by the platform, the
deviation accumulates higher. Adequate path clearance can allow
the platforms to be in action even with some degrees of divergence.
The deviation is also subjective to the platform size, such as a 5𝑐𝑚
deviation for a mobile trash bin is less apprehended compared to a
mobile coffee mug. Without any feedback sensors, the mechanisms
are not self-aware of their positions and use the starting point as
the reference. Thus, changing the initial orientation of the mecha-
nism can lead to a wrong trajectory. Additionally, the mechanisms
require re-authoring if they are relocated to a different place. In the
future, an onboard IMU sensor can help recognize the deflection
from the position, while the addition of positioning sensors and
odometric feedback can extend Mobiot’s capability in the wild.

7 CONCLUSION
Personal robotics is receiving concentrated focus by researchers
from several domains. In addition to actuation and sensing, mo-
bility is another critical element for domestic robotic gadgets. Yet,
unlike 3D-printing passive artifacts, the process of adding mobility
through personal fabrication is convoluted as it demands domain-
specific expertise. Mobiot advocates a barrier-free tool for end-users
to augment everyday objects with mobility through personal fabri-
cation. It captures design requirements from the physical world and
allows users tomobilize everyday objects without expert knowledge.
We believe Mobiot can add one more step towards democratizing
robotics for end-users. Mass participation of end-users in personal
robotics can accelerate the arrival of the future smart home.

ACKNOWLEDGMENTS
We thank the reviewers for their valuable feedback. We also thank
the experts for their participation.

REFERENCES
[1] Jacopo Aleotti, Stefano Caselli, and Monica Reggiani. 2004. Leveraging on a

virtual environment for robot programming by demonstration. Robotics and
Autonomous Systems 47, 2-3 (2004), 153–161.

[2] Ron Alterovitz, Sven Koenig, and Maxim Likhachev. 2016. Robot planning in
the real world: Research challenges and opportunities. Ai Magazine 37, 2 (2016),
76–84.

[3] Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. 2009. A
survey of robot learning from demonstration. Robotics and autonomous systems
57, 5 (2009), 469–483.

[4] Jordan Ash, Monica Babes, Gal Cohen, Sameen Jalal, Sam Lichtenberg, Michael
Littman, Vukosi Marivate, Phillip Quiza, Blase Ur, and Emily Zhang. 2011. Scratch-
able devices: user-friendly programming for household appliances. In Interna-
tional Conference on Human-Computer Interaction. Springer, 137–146.

[5] Daniel Ashbrook, Shitao Stan Guo, and Alan Lambie. 2016. Towards augmented
fabrication: Combining fabricated and existing objects. In Proceedings of the
2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems.
1510–1518.

[6] Alexander Berman, Francis Quek, Robert Woodward, Osazuwa Okundaye, and
Jeeeun Kim. 2020. “Anyone Can Print”: Supporting Collaborations with 3D Printing
Services to Empower Broader Participation in Personal Fabrication. Association for
Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3419249.
3420068

[7] Aude Billard, Sylvain Calinon, Ruediger Dillmann, and Stefan Schaal. 2008. Survey:
Robot programming by demonstration. Technical Report. Springrer.

[8] Elin A Björling, Emma Rose, and Rachel Ren. 2018. Teen-robot interaction: A
pilot study of engagement with a low-fidelity prototype. In Companion of the
2018 ACM/IEEE International Conference on Human-Robot Interaction. 69–70.

[9] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. 2020. Yolov4:
Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934
(2020).

[10] Paul Bovbel and Goldie Nejat. 2014. Casper: An assistive kitchen robot to promote
aging in place. Journal of Medical Devices 8, 3 (2014).

[11] Leah Buechley, Daniela K Rosner, Eric Paulos, and Amanda Williams. 2009. DIY
for CHI: methods, communities, and values of reuse and customization. In CHI’09
Extended Abstracts on Human Factors in Computing Systems. 4823–4826.

[12] Maya Cakmak, Crystal Chao, and Andrea L Thomaz. 2010. Designing interactions
for robot active learners. IEEE Transactions on Autonomous Mental Development
2, 2 (2010), 108–118.

[13] Yuanzhi Cao, Zhuangying Xu, Fan Li, Wentao Zhong, Ke Huo, and Karthik
Ramani. 2019. V. ra: An in-situ visual authoring system for robot-iot task planning
with augmented reality. In Proceedings of the 2019 on Designing Interactive Systems
Conference. 1059–1070.

[14] Sonia Mary Chacko and Vikram Kapila. 2019. An augmented reality interface
for human-robot interaction in unconstrained environments. In 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE, 3222–
3228.

[15] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing
Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianx-
iong Xiao, Li Yi, and Fisher Yu. 2015. ShapeNet: An Information-Rich 3D Model
Repository. Technical Report arXiv:1512.03012 [cs.GR]. Stanford University —
Princeton University — Toyota Technological Institute at Chicago.

[16] Xiang’Anthony’ Chen, Stelian Coros, Jennifer Mankoff, and Scott E Hudson. 2015.
Encore: 3D printed augmentation of everyday objects with printed-over, affixed
and interlocked attachments. In Proceedings of the 28th Annual ACM Symposium
on User Interface Software & Technology. 73–82.

[17] Xiang’Anthony’ Chen, Jeeeun Kim, Jennifer Mankoff, Tovi Grossman, Stelian
Coros, and Scott E Hudson. 2016. Reprise: A design tool for specifying, generating,
and customizing 3D printable adaptations on everyday objects. In Proceedings of
the 29th Annual Symposium on User Interface Software and Technology. 29–39.

[18] Hyungjun Cho, Han-Jong Kim, JiYeon Lee, Chang-Min Kim, Jinseong Bae, and
Tek-Jin Nam. 2021. IoTIZER: A Versatile Mechanical Hijacking Device for Cre-
ating Internet of Old Things. In Designing Interactive Systems Conference 2021.
90–103.

[19] Matei Ciocarlie, Kaijen Hsiao, Adam Leeper, and David Gossow. 2012. Mobile
manipulation through an assistive home robot. In 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, 5313–5320.

[20] Ruta Desai, James McCann, and Stelian Coros. 2018. Assembly-aware design
of printable electromechanical devices. In Proceedings of the 31st Annual ACM
Symposium on User Interface Software and Technology. 457–472.

[21] Alexander Dijkshoorn, Patrick Werkman, Marcel Welleweerd, Gerjan Wolterink,
Bram Eijking, John Delamare, Remco Sanders, and Gijs JM Krijnen. 2018. Em-
bedded sensing: Integrating sensors in 3-D printed structures. Journal of Sensors
and Sensor Systems 7, 1 (2018), 169–181.

[22] Rüdiger Dillmann. 2004. Teaching and learning of robot tasks via observation of
human performance. Robotics and Autonomous Systems 47, 2-3 (2004), 109–116.

[23] Ohsung Doh and Ilkyu Ha. 2015. A digital door lock system for the internet of
things with improved security and usability. Advanced Science and Technology
Letters 109, Security, Reliability and Safety 2015 (2015), 33–38.

[24] M Ehrenmann, R Zollner, O Rogalla, and R Dillmann. 2002. Programming service
tasks in household environments by human demonstration. In Proceedings. 11th
IEEE International Workshop on Robot and Human Interactive Communication.
IEEE, 460–467.

[25] Kerstin Fischer, Franziska Kirstein, Lars Christian Jensen, Norbert Krüger, Kamil
Kukliński, Maria Vanessa aus der Wieschen, and Thiusius Rajeeth Savarimuthu.
2016. A comparison of types of robot control for programming by demonstration.
In 2016 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI).
IEEE, 213–220.

[26] David Fischinger, Peter Einramhof, Konstantinos Papoutsakis,WalterWohlkinger,
Peter Mayer, Paul Panek, Stefan Hofmann, Tobias Koertner, AstridWeiss, Antonis
Argyros, et al. 2016. Hobbit, a care robot supporting independent living at home:
First prototype and lessons learned. Robotics and Autonomous Systems 75 (2016),
60–78.

[27] Google. 2019. Blockly. https://developers.google.com/blockly/.
[28] Horst-Michael Gross, Steffen Mueller, Christof Schroeter, Michael Volkhardt,

Andrea Scheidig, Klaus Debes, Katja Richter, and Nicola Doering. 2015. Robot
companion for domestic health assistance: Implementation, test and case study
under everyday conditions in private apartments. In 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 5992–5999.

[29] Sachini Herath, Hang Yan, and Yasutaka Furukawa. 2020. RoNIN: Robust Neural
Inertial Navigation in the Wild: Benchmark, Evaluations, & New Methods. In
2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE,
3146–3152.

https://doi.org/10.1145/3419249.3420068
https://doi.org/10.1145/3419249.3420068
https://developers.google.com/blockly/

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Abul Al Arabi, Jiahao Li, Xiang ‘Anthony’ Chen, and Jeeeun Kim

[30] Gaoping Huang, Pawan S Rao, Meng-Han Wu, Xun Qian, Shimon Y Nof, Karthik
Ramani, and Alexander J Quinn. 2020. Vipo: Spatial-Visual Programming with
Functions for Robot-IoT Workflows. In Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems. 1–13.

[31] Frédéric Kaplan. 2005. Everyday robotics: robots as everyday objects. In Pro-
ceedings of the 2005 joint conference on Smart objects and ambient intelligence:
innovative context-aware services: usages and technologies. 59–64.

[32] Tarik Keleştemur, Naoki Yokoyama, Joanne Truong, Anas Abou Allaban, and
Taşkin Padir. 2019. System architecture for autonomous mobile manipulation of
everyday objects in domestic environments. In Proceedings of the 12th ACM Inter-
national Conference on PErvasive Technologies Related to Assistive Environments.
264–269.

[33] Jeeeun Kim, Haruki Takahashi, Homei Miyashita, Michelle Annett, and Tom Yeh.
2017. Machines as co-designers: A fiction on the future of human-fabrication
machine interaction. In Proceedings of the 2017 CHI Conference Extended Abstracts
on Human Factors in Computing Systems. 790–805.

[34] Yuki Koyama, Shinjiro Sueda, Emma Steinhardt, Takeo Igarashi, Ariel Shamir,
andWojciech Matusik. 2015. AutoConnect: computational design of 3D-printable
connectors. ACM Transactions on Graphics (TOG) 34, 6 (2015), 1–11.

[35] Stacey Kuznetsov and Eric Paulos. 2010. Rise of the expert amateur: DIY projects,
communities, and cultures. In Proceedings of the 6th Nordic conference on human-
computer interaction: extending boundaries. 295–304.

[36] Jiahao Li, Meilin Cui, Jeeeun Kim, and Xiang’Anthony’ Chen. 2020. Romeo: A
Design Tool for Embedding Transformable Parts in 3DModels to Robotically Aug-
ment Default Functionalities. In Proceedings of the 33rd Annual ACM Symposium
on User Interface Software and Technology. 897–911.

[37] Jiahao Li, Jeeeun Kim, and Xiang’Anthony’ Chen. 2019. Robiot: A Design Tool
for Actuating Everyday Objects with Automatically Generated 3D Printable
Mechanisms. In Proceedings of the 32nd Annual ACM Symposium on User Interface
Software and Technology. 673–685.

[38] Chuanhua Lu, Hideaki Uchiyama, Diego Thomas, Atsushi Shimada, and Rin-
ichiro Taniguchi. 2019. Indoor positioning system based on chest-mounted IMU.
Sensors 19, 2 (2019), 420.

[39] Catarina Mota. 2011. The rise of personal fabrication. In Proceedings of the 8th
ACM conference on Creativity and cognition. 279–288.

[40] Pedro Neto, J Norberto Pires, and A PauloMoreira. 2010. High-level programming
and control for industrial robotics: using a hand-held accelerometer-based input
device for gesture and posture recognition. Industrial Robot: An International
Journal (2010).

[41] Pedro Neto, J Norberto Pires, and Anónio Paulo Moreira. 2013. 3-D position
estimation from inertial sensing: Minimizing the error from the process of double
integration of accelerations. In IECON 2013-39th Annual Conference of the IEEE
Industrial Electronics Society. IEEE, 4026–4031.

[42] Donald A Norman. 2005. Robots in the home: what might they do? Interactions
12, 2 (2005), 65.

[43] WilliamOdom, James Pierce, Erik Stolterman, and Eli Blevis. 2009. Understanding
why we preserve some things and discard others in the context of interaction
design. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. 1053–1062.

[44] Lauro Ojeda and Johann Borenstein. 2007. Non-GPS navigation with the per-
sonal dead-reckoning system. In Unmanned Systems Technology IX, Vol. 6561.
International Society for Optics and Photonics, 65610C.

[45] Lauro Ojeda and Johann Borenstein. 2007. Personal dead-reckoning system for
GPS-denied environments. In 2007 IEEE International Workshop on Safety, Security
and Rescue Robotics. IEEE, 1–6.

[46] Ortak. [n.d.]. Ortak 3D Printable Products - edelkrone. https://edelkrone.com/
collections/ortak (Accessed on 03/09/2022).

[47] Mikkel Rath Pedersen and Volker Krüger. 2015. Gesture-based extraction of robot
skill parameters for intuitive robot programming. Journal of Intelligent & Robotic
Systems 80, 1 (2015), 149–163.

[48] Huaishu Peng, Jimmy Briggs, Cheng-YaoWang, Kevin Guo, Joseph Kider, Stefanie
Mueller, Patrick Baudisch, and François Guimbretière. 2018. RoMA: Interactive
fabrication with augmented reality and a robotic 3D printer. In Proceedings of the
2018 CHI conference on human factors in computing systems. 1–12.

[49] Martha E Pollack, Laura Brown, Dirk Colbry, Cheryl Orosz, Bart Peintner, Sailesh
Ramakrishnan, Sandra Engberg, Judith T Matthews, Jacqueline Dunbar-Jacob,
Colleen E McCarthy, et al. 2002. Pearl: A mobile robotic assistant for the elderly.
In AAAI workshop on automation as eldercare, Vol. 2002. 85–91.

[50] Print+. [n.d.]. print+ DIY products. https://www.print.plus/ (Accessed on
03/09/2022).

[51] Raf Ramakers, Fraser Anderson, Tovi Grossman, and George Fitzmaurice. 2016.
Retrofab: A design tool for retrofitting physical interfaces using actuators, sensors
and 3d printing. In Proceedings of the 2016 CHI Conference on Human Factors in
Computing Systems. 409–419.

[52] Mitchel Resnick, BradMyers, Kumiyo Nakakoji, Ben Shneiderman, Randy Pausch,
Ted Selker, and Mike Eisenberg. 2005. Design Principles for Tools to Support
Creative Thinking. http://www.cs.umd.edu/hcil/CST/Papers/designprinciples.
htm. (Accessed on 03/27/2021).

[53] David Roedl, Shaowen Bardzell, and Jeffrey Bardzell. 2015. Sustainable mak-
ing? Balancing optimism and criticism in HCI discourse. ACM Transactions on
Computer-Human Interaction (TOCHI) 22, 3 (2015), 1–27.

[54] Corey Shemelya, Fernando Cedillos, Efrian Aguilera, E Maestas, J Ramos, D
Espalin, D Muse, R Wicker, and E MacDonald. 2013. 3D printed capacitive
sensors. In SENSORS, 2013 IEEE. IEEE, 1–4.

[55] Himanshu Singh, Vishal Pallagani, Vedant Khandelwal, and UVenkanna. 2018. IoT
based smart home automation system using sensor node. In 2018 4th International
Conference on Recent Advances in Information Technology (RAIT). IEEE, 1–5.

[56] Steppschuh. [n.d.]. Steppschuh/Sensor-Data-Logger: Android Wear sensor data
plotter. https://github.com/Steppschuh/Sensor-Data-Logger (Accessed on
03/09/2022).

[57] Michael Suguitan and Guy Hoffman. 2019. Blossom: A handcrafted open-source
robot. ACM Transactions on Human-Robot Interaction (THRI) 8, 1 (2019), 1–27.

[58] Ja-Young Sung. 2011. Towards the human-centered design of everyday robots.
Georgia Institute of Technology.

[59] Carlos E Tejada, Raf Ramakers, Sebastian Boring, and Daniel Ashbrook. 2020.
AirTouch: 3D-printed Touch-Sensitive Objects Using Pneumatic Sensing. In
Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems.
1–10.

[60] ThisAbles. [n.d.]. Assistive Technology Devices For Ikea Products.
https://www.universaldesignstyle.com/thisables-assistive-technology-devices-
for-ikea-products/. (Accessed on 03/09/2022).

[61] Panagiota Tsarouchi, Athanasios Athanasatos, Sotiris Makris, Xenofon Chatzige-
orgiou, and George Chryssolouris. 2016. High level robot programming using
body and hand gestures. Procedia Cirp 55 (2016), 1–5.

[62] RonWakkary and Leah Maestri. 2007. The resourcefulness of everyday design. In
Proceedings of the 6th ACM SIGCHI Conference on Creativity & Cognition. 163–172.

[63] Weitian Wang, Rui Li, Yi Chen, Z Max Diekel, and Yunyi Jia. 2018. Facilitating
human–robot collaborative tasks by teaching-learning-collaboration from human
demonstrations. IEEE Transactions on Automation Science and Engineering 16, 2
(2018), 640–653.

[64] Chao Wen, Yinda Zhang, Zhuwen Li, and Yanwei Fu. 2019. Pixel2mesh++:
Multi-view 3d mesh generation via deformation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision. 1042–1051.

[65] Karl Willis, Eric Brockmeyer, Scott Hudson, and Ivan Poupyrev. 2012. Printed
optics: 3D printing of embedded optical elements for interactive devices. In
Proceedings of the 25th annual ACM symposium on User interface software and
technology. 589–598.

[66] Thomas Wrensch and Michael Eisenberg. 1998. The programmable hinge: to-
ward computationally enhanced crafts. In Proceedings of the 11th annual ACM
symposium on User interface software and technology. 89–96.

[67] Hang Yan, Qi Shan, and Yasutaka Furukawa. 2018. RIDI: Robust IMU double
integration. In Proceedings of the European Conference on Computer Vision (ECCV).
621–636.

[68] Jing Zhu, Jin Xie, and Yi Fang. 2018. Learning adversarial 3d model generation
with 2d image enhancer. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 32.

https://edelkrone.com/collections/ortak
https://edelkrone.com/collections/ortak
https://www.print.plus/
http://www.cs.umd.edu/hcil/CST/Papers/designprinciples.htm
http://www.cs.umd.edu/hcil/CST/Papers/designprinciples.htm
https://github.com/Steppschuh/Sensor-Data-Logger
https://www.universaldesignstyle.com/thisables-assistive-technology-devices-for-ikea-products/
https://www.universaldesignstyle.com/thisables-assistive-technology-devices-for-ikea-products/

	Abstract
	1 Introduction
	2 Related Work
	2.1 Interaction with Personal Robotics (HRI)
	2.2 Personalizing Smart Systems for Automated Everyday Lives & Accessibility
	2.3 Motion Planning by Demonstration
	2.4 Reality-based Augmentation of the Physical World by Personal Fabrication

	3 Mobiot: An end-to-end toolkit to transform everyday passive objects into smart mobile objects
	3.1 System Overview
	3.2 User Workflow and Design Scenarios

	4 Implementation
	4.1 Capturing Requirements by Demonstration
	4.2 User Interaction and Task Design
	4.3 Generating Outputs
	4.4 Reusability of Produced Mechanisms
	4.5 Schematics and Constraints
	4.6 Limitations in Hardware Generation.
	4.7 Design & Authoring Tool

	5 Evaluation
	5.1 Technical Validation
	5.2 Experts Interview

	6 Limitation & Discussion
	6.1 Personal Robotics and Mobiot
	6.2 DIY Robotics and Mobiot
	6.3 Automatically Recovering 3D Model Geometry from 2D Photo Input
	6.4 Sensing to Adapt to Dynamic Changes
	6.5 Motion Contextualization
	6.6 Limitations in Motion

	7 Conclusion
	Acknowledgments
	References

