
CraftML: 3D Modeling is Web Programming
Tom Yeh Jeeeun Kim

Computer Science
University of Colorado Boulder

{tom.yeh, jeeeun.kim}@colorado.edu

ABSTRACT
We explore web programming as a new paradigm for program-
matic 3D modeling. Most existing approaches subscribe to
the imperative programming paradigm. While useful, there
exists a gulf of evaluation between procedural steps and the
intended structure. We present CraftML, a language providing
a declarative syntax where the code is the structure. CraftML
offers a rich set of programming features familiar to web de-
velopers of all skill levels, such as tags, hyperlinks, document
object model, cascade style sheet, JQuery, string interpolation,
template engine, data injection, and scalable vector graphics.
We develop an online IDE to support CraftML development,
with features such as live preview, search, module import, and
parameterization. Using examples and case studies, we demon-
strate that CraftML offers a low floor for beginners to make
simple designs, a high ceiling for experts to build complex
computational models, and wide walls to support many appli-
cation domains such as education, data physicalization, tactile
graphics, assistive devices, and mechanical components.

Author Keywords
programming; 3D modeling; 3D printing; creativity support

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (HCI)

INTRODUCTION
Programmatic 3D modeling is an advanced method for de-
signing a 3D model by expressing it as executable code. It
offers several advantages over GUI-based 3D modeling tools:
parameters can be given to a design to make it easy to cus-
tomize; precision can be achieved through computation and
logic; repeated structures can be defined by mapping data to
structures; and sound software engineering approaches such
as modularity, abstraction, and version control can be applied.

However, several issues with programmatic 3D modeling have
been noted by practitioners. A common issue is its skill re-
quirements. One must already be proficient in a programming
language such as Python, C++, or JavaScript. Efforts exist
to simplify programmatic 3D modeling by bringing it to a
visual programming platform such as Scratch [28]. But such

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CHI 2018, April 21–26, 2018, Montreal, QC, Canada
© 2018 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5620-6/18/04 ...$15.00.
http://dx.doi.org/10.1145/3173574.3174101

simplification often limits designers to creating simple appli-
cations; there is not a clear path to professional applications.
Another issue is program interpretability. Even for skilled
programmers, there exists a significant gulf of evaluation be-
tween the source code and its output. Given a piece of code, to
interpret the structure it generates, one must read each step in
the code and mentally simulate its effect. As a result of these
issues, a great majority of 3D model designers do not use a
programmatic modeling tool [7, 25]. While a growing number
of parametric models can be found online, they represent only
a very small percentage of all shared models.

These issues could stem from the programming paradigm
adopted by most current programmatic 3D modeling tools—
the imperative paradigm. In this paradigm, a designer writes a
sequence of code statements where each statement specifies
a modeling operation, for instance: create a sphere, scale it
up by 2, or rotate it by 45 degrees. In some tools, functions
and classes are available to support higher-level abstractions.
While the imperative programming paradigm is adequate for
a wide range of computational tasks that involve algorithmic
procedures, we question how well it supports design tasks that
value expressiveness and interpretability. Are there alterna-
tives?

This paper explores the web programming paradigm as a pos-
sible alternative. The rise of Web 2.0 and its recent spread to a
wide range of application platforms, such as mobile apps, IoT,
robotics, and wearables, indicate that the web programming
paradigm is becoming a dominant paradigm for developers to
build interactive applications. The three “pillars” of the web
programming paradigm—HTML, CSS, and Javascript, have
proven to be effective for developers to programmatically spec-
ify the three aspects of an user interface—structure, aesthetics,
and dynamic behaviors. To a web developer, this paradigm
presents a low floor—easy to start writing a simple web page,
while affording a high ceiling—possible to grow the page into
a full-fledged web app. Moreover, this paradigm features a
wide wall that supports a large number of application domains.
As a result, the web developer community has grown from
what used to be a small, exclusive club of elite programmers to
an immensely large community of people with varying levels
of technical and design skills.

We present CraftML, a new programming paradigm for 3D
modeling that is based on the modern web programming
paradigm. In designing CraftML, we aimed to integrate as
many useful ideas from the web programming paradigm as
possible, including declarative tags, hyperlinks, document
object model (DOM), cascade style sheet (CSS) selectors,
JQuery for DOM manipulation, string interpolation, template
engine, data injection, and scalable vector graphic (SVG). In

some cases, we reached the limit of the web design metaphor
and needed to introduce extensions, such as modules, STL
imports, and transform/layout operators. Later we will give
an overview of these programming features and explain how
they help resolve the common issues in current programmatic
modeling tools.

The overall structure of the paper is as follows: we review
related work on current programmatic modeling tools; we de-
scribe our design philosophy behind CraftML, explaining who
we target, what issues we identified, and how we plan to solve
them; we present the major language features of CraftML;
we describe an online IDE we built to support developing in
CraftML; we provide examples and case studies as valida-
tion of CraftML’s usefulness; and we discuss controversial
issues behind some of our design decisions; finally, we discuss
limitations and offer directions for future research.

RELATED WORKS
CraftML is designed to be a (1) low-floor, high-ceiling markup
language to provide (2) programmatic 3D modeling capabil-
ities, which can simplify (3) customization of models. Here
we review these three areas of related works.

Markup Languages
Markup languages are easy to interpret and write. They have
a low floor for many emergent programmers to begin coding.
Some also have a high ceiling and provide a pathway for a pro-
grammer to gradually learn new features and shift to advanced
levels [37]. The most popular markup languages are HTML for
web development and XML for data exchange. Relevant to our
work is VRML (Virtual Reality Modeling Language) for rep-
resenting 3D interactive vector graphics for web-based virtual
realty applications, such as reviewing architecture plans [24].
VRML’s format consists of text with 3D components and as-
sociated URLs. A browser can dynamically fetch a web page
or another VRML file from the internet. VRML was later
succeeded by more advanced formats such as X3D and 3MF,
which can encode richer semantic data in a design. More
recently, A-frame [1] is a web-based programming language
for designing 3D environments for VR and AR applications.
It is based on an entity-component framework that provides
a declarative, extensible, and composable structures. Using
<script> tags, A-frame developers can also design advanced
features, for example, layout models in custom pattern.

However, these formats are not designed with 3D printing in
mind, where the use of 2D shapes, open curves, and open
meshes are paramount [16]. Number of models are not water-
tight, resulting in non-manifold models that are not slice-able
or detached primitives when printed. CraftML mainly targets
3D printable models, guaranteeing to be watertight.

In contrast, CraftML treats 3D solids as first-class objects,
making it easy to yield watertight, 3D printable models. In
terms of bringing web programming ideas into 3D modeling,
MetaMorphe [39] is closely related. It lets a designer decom-
pose an existing mesh into semantic parts (e.g., cup→ {body,
handle}) and writes a CSS-like expression to modify the mesh
(e.g., body { op: baloon; }). Like MetaMorphe, CraftML takes
advantage of the affordances of web markup languages to
support 3D modeling.

GUI vs Programming for 3D Modeling
Most 3D modeling tools are based on a GUI. These tools
are easier to learn (compared to programming) and offer
the benefits of direct manipulation. Some let a designer
use solids as primitives to combine them into a structure
(e.g., TinkerCAD [38], SolidWorks [35]). Some let design-
ers draw 2D sketches and convert them into 3D shapes (e.g.,
SketchUp [32]). And some let designers work with the mesh
directly (e.g., MeshMixer [22]). Programmable 3D modeling
tools, on the other hand, have a steeper learning curve [36].
But they enable a skilled designer to use computation and logic
to programmatically specify a structure in a precise manner;
this would be hard to achieve otherwise. Autodesk Maya [33]
and Fusion360 [2] are examples of GUI-based tools offer-
ing a scripting system for designers to apply programming
principles and abstraction. In terms of pure programmatic
3D modeling tools, OpenSCAD [23] is arguably the most
widely adopted. It provides a set of functions to create shape
primitives and apply geometric operations to them. Most pro-
grammatic 3D models shared online are written in OpenSCAD.
One significant drawback of OpenSCAD is that it is not based
on an existing programming language and cannot take advan-
tage of the ecosystem of libraries or the user base of it. Thus,
wrappers and derivatives of OpenSCAD have been made for
Ruby (RubyScad [30]), Python (SolidPython [34]), JavaScript
(OpenJScad [26]), and Scratch (BlocksCAD [6]). People al-
ready familiar with these high-level languages may find it easy
to start coding 3D models and use existing libraries and tools.
CraftML follows the same logic by seeking to leverage the
existing ecosystem of web programming.

Supporting Customization
As designers think of a 3D printer more as a personal fab-
rication tool for crafting unique artifacts and less as a mass
production tool for churning out identical copies, the need
to support designers in remixing, reusing, and customizing
models has grown considerably. The most common method is
to take a parametric model and provide a GUI for end-users to
specify parameters. Thingiverse Customizer [9] exemplifies a
platform utilizing this method. It takes an OpenSCAD file and
reads its header for parameter definitions. It then generates a
GUI dialog and populates it with controls for each defined pa-
rameter. A novice user can use the dialog to generate a custom
model simply by inputting parameter values, without having to
touch the underlying source code. Several other programming-
based 3D modeling tools, such as OpenJSCAD, Fusion360,
have similar capabilities. While a GUI dialog is convenient,
the range of customizability of a design is limited to the param-
eters the design’s author chose to expose. If another user were
to add a parameter to a component in the design that is not
already parameterized, it would be difficult even for a skilled
programmer. It would require procedurally tracing the code to
find the exact line or function call responsible for generating
that component.

Another customization method is to relax the requirement of
being a parametric model and to work directly with a mesh. A
user interactively selects a point or a region on a mesh to cus-
tomize its structure. Some examples are Reprise [8] for adding
adaptations such as a handle, Facade [12] for adding accessible

Braille labels, RetroFab [27] for adding an enclosure structure
for actuators or sensors, PipeDream [31] for adding internal
tubes, and CardBoardiZer [40] for adding articulated features.
These systems allow users to interactively select a point or a
region on a mesh to customize local properties such as shape
and texture or to add attachments such as a handle. CraftML
combines both methods. It allows for the automatic genera-
tion of a control dialog as Thingiverse Customizer does, but it
makes adding new parameters easy. Because of its declarative
syntax and the DOM structure it affords, one can interactively
select a part in the viewer to highlight the node in the code,
thereby locating the insertion point for a new parameter. This
benefit will be detailed in later sections.

DESIGN PHILOSOPHY
We present a number of our design philosophy include:

Target Population. We aim to draw more new users into the
practice of programmatic 3D modeling, and look to the large
web developer community for opportunities. If we provided a
tool sufficiently similar to web programming, would it pave an
accessible path for some from this large community to enter
the marvelous world of programmatic 3D modeling?

We segment web developers into four subgroups according to
a typical professional skill development trajectory:

• Beginner: who knows the basics of HTML.
• Template Designer: who can use HTML and CSS to develop

and style a template.
• Programmer: who can write Javascript to make a web page

interactive and data driven, using a DOM manipulation
library such as JQuery [18] or a data visualization library
such as D3 [10].
• Expert: who can develop Web 2.0 applications, using a

framework such as Angular [5].
Later we will refer back to this segmentation whenever a
feature or a finding is specific to a particular subgroup.

Usability. There are three dimensions particularly important
for assessing the usability of a programming paradigm—floor,
ceiling, and wall. We aim to achieve the favorable end in these
dimensions:

• Low floor: can be learned easily to build simple applica-
tions;
• High ceiling: can be used to develop advanced applications;
• Wide wall: can be used in a variety of applications.

Table 1 below compares several programming tools along
these dimensions. The web programming paradigm, as rep-
resented by HTML, CSS, and Javascript, is situated at the
beneficial end along all dimensions– as prior HTML style
3D modeling platform, A-Frame supports the closest design
philosophy to CraftML. Our optimism is that by leveraging
the web paradigm, our tool will inherit these useful proper-
ties. Some tools also (marked as †) provide programming
based development tools for advanced users (i.e. script [4]
and APIs [3]) but present a steep learning curve. Later in
the evaluation and case studies we will provide evidence to
support this optimism.

Tool Floor Ceiling Wall
HTML/CSS/JS *low *high *wide
Scratch [28] *low low *wide
TinkerCAD [38] *low low narrow
Rhino [29]† high *high medium
SolidWorks [35] high *high medium
SketchUp [32] *low *high narrow
OpenSCAD [23] high *high narrow
AutoCAD/Maya [33]† high *high *wide
Fusion360 [2]† high *high medium
A-Frame [1] *low *high *wide

Table 1. Comparison of design tools. Features considered most favorable
are starred.

Challenges. By applying the web programming paradigm to
3D modeling, we aim to address issues with procedural 3D
model programming. To collect these issues, we surveyed the
literature (see Related Works), taught OpenSCAD in an under-
graduate computer science class and solicited feedback from
students, analyzed posts seeking help in forums such as Stack
Overflow, and built research prototypes using OpenSCAD,
Sketchup scripting, and Fusion360. Table 2 below summa-
rizes these issues and lists CraftML’s features as a potentially
viable solution.

Issue Solution
hard to read code declarative syntax
hard to align objects structural tags, layout operators
hard to reuse code link, part, module
hard to select a part to
apply operations CSS selector, JQuery

hard to refactor template, string interpolation
hard to 3D print water-tight solids, CSG operation

Table 2. A number of challenges identified from existing 3D model-
ing/programming tools, and solutions that CraftML provides.

LANGUAGE

Basic Features
Basic features are suitable for beginner web developers to
quickly learn and create simple designs.

Primitives
Shape primitives are the most basic building blocks (as in most
other 3D modeling tools). CraftML provides 3D primitives
such as cubes, spheres, cylinders, prisms, polyhedrons, and
1D/2D primitives such as rectangles, triangles, and points. A
primitive is specified as a pair of open and close tags or a
self-closing tag. Each primitive type has a set of attributes
for customization. The example below defines a cube of the
default size and a sphere with a radius of 20.

1 <cube / >
2 <sphere rad ius=" 20 " / >

Structure
Aligning objects in 3D scenes is one of the most difficult tasks
for users regardless of their skill level [14]. It is fairly common
for manual alignment to introduce small gaps or offsets that
are difficult to notice. Professional tools such as SolidWorks

and Fusion360 provide four different view-ports for designers
to visually inspect whether components are correctly aligned
in all axes in order to minimize alignment errors.

CraftML provides a set of structural tags to achieve precise
alignment of elements. They are <row>, <col>, and <stack>,
which are containers that can automatically align its children
along the x, y, and z axis respectively. Each tag also provides
attributes, such as spacing, for customizing the alignment
behaviors. The example code below uses structure tags to
arrange a set of four cubes into a standing T formation, by
declaring “a row of three cubes stacked on top of another cube.”

1 <stack>
2 <row>
3 <cube / ><cube / ><cube / >
4 < / row>
5 <cube / >
6 < / stack>

Text
CraftML supports a set of common HTML tags for creating
textual elements, such as <div>, <h1>, and <h2>. Textual ele-
ments, when introduced, are defaulted to 3D shapes with a
thickness of 1mm. For accessibility support, CraftML pro-
vides <braille> for creating braille text. The following example
creates “Hello World” in both English and Braille:

1 <d iv >Hel lo World< / d i v >
2 < b r a i l l e >Hel lo World< / b r a i l l e >

Id/Class
In imperative programmatic 3D modeling (e.g., OpenSCAD),
once a structure is generated it is often difficult to then choose
a particular piece of the structure on which to perform some
operation. CraftML solves this problem by borrowing the
concept of CSS selectors, using tag names, id, and class labels.
After declaring a structure, one can easily annotate the struc-
ture using id and class labels, just like in web development.
Later we will explain how CSS selectors can play an impor-
tant role in many operations, including styling, transformation,
layout, and scripting.

Style
CraftML supports using <style> for designers to attach an inline
stylesheet to a design. A model is represented as a hierarchy
of nodes, just like the Document Object Model (DOM). We
can select certain nodes in this hierarchy by their id or class
and apply the computed style to them. The example below
uses a stylesheet to set the middle cube gold and the others
black.

1 < s t y l e >
2 #middle { co l o r : gold ; }
3 . o ther { co l o r : b lack ; }
4 < / s t y l e >
5 <stack>
6 <cube c lass=" o ther " / >
7 <cube i d =" middle " / >
8 <cube c lass=" o ther " / >
9 < / stack>

While the majority of 3D prints remain monochrome, styling
has utility beyond visual aesthetics. We found a number of
practical use cases for styling, such as: (1) Debugging: We can
change the color or visibility of certain elements to temporarily
focus on or ignore them; (2) Spacing: We can create spacing
elements and set their visibility to hidden. Just like in web
design, these hidden elements still hold their space in layout
calculations; and (3) Partial Export: We can select a specific
part of the model to export and 3D print, for example, in
dual-color 3D printing applications (see Examples).

Transform
CraftML provides a set of transform operators to modify the
geometry of a shape. Commonly used operators are:

• scale, translate, and rotate for transformations relative to a
shape’s current dimensions,
• position and size for setting a shape’s position and size.
• crop for cropping a shape into a smaller box.
• cut css-selectors for cutting the nodes selected by css-

selectors from the rest of the nodes in the subtree.

The code below creates three unit cubes that respectively: (1)
scales by 3; (2) rotates by 45 degrees w.r.t. the x-axis; and (3)
changes its position to (10,20,30), and rotates by 30 degrees
w.r.t. the z-axis.

1 <cube t = " scale 3 " / >
2 <cube t = " r o t a t e x 45 " / >
3 <cube t = " p o s i t i o n 10 20 30; r o t a t e z 30 " / >

The following example defines a cube and two cylinders. One
cylinder is given an id (id="hole") so that we can select it in the
cut operator to achieve the desired effect.

1 <g t = " cut #hole ">
2 <cube t = " scale x 2 "
3 s t y l e =" opac i t y : 0 . 5 " / >
4 <row>
5 < c y l i n d e r i d = " hole " / >
6 < c y l i n d e r / >
7 < / row>
8 < / g>

Layout
CraftML provides a set of layout operators to help spatially
arrange the children of a node:

• align: aligns all children to the max side or the min side of
the first child along selected dimensions.
• center: centers all children to the first child along selected

dimensions.
• join: joins all children into an array-like structure where

each child is next to the previous child along a selected
dimension.

The example below uses layout operators to achieve the same
effect as using <row> to arrange three cubes in a row.

1 <g l = " j o i n x ; center yz " / >
2 <cube / ><cube / ><cube / >
3 < / g>

Imports
For beginners, it is easy to start modeling by importing and
remixing parts made by others. The example below imports
an octopus and a boat from an STL file and another CraftML
file respectively. It arranges both objects in a row to depict the
scene of a giant octopus chasing a boat.

1 < pa r t name=" octopus " module=" / path / to / octopus . s t l " / >
2 < pa r t name=" boat " module=" / path / to / boat . c r a f t m l " / >
3 <stack>
4 <octopus / ><boat / >
5 < / stack>

Intermediate Features
Intermediate features are suitable for web designers who are
proficient in HTML and CSS and possess some limited coding
skills such as the ability to develop view templates.

Part and Parameters
As a model becomes complicated, it is often desirable to de-
compose it into parts. CraftML provides a <part> tag for de-
signers to define custom parts that can be reused and also to
improve readability. Additionally, a custom part can carry pa-
rameters for further customization. To do so, we add a <param>
tag for each parameter. Then, we replace hard-coded values
using string interpolation (changing scale 2 to scale {{ x }}).

The example code below defines a “pin” part which is a flat
disk below a thinner cylinder. It has one parameter to control
a pin’s thickness. This parameter is used to specify the x and
y arguments of the size transform operator. Then, we can use
<pin> as a custom tag to compose a larger structure. Here, we
create a column of three pins with varying thickness:

1 < pa r t name=" p in ">
2 <param name=" th ickness " d e f a u l t = " 1 " / >
3 <stack>
4 < c y l i n d e r t = " s ize xy { { th ickness } } " / >
5 < c y l i n d e r t = " s ize 10 10 1 " / >
6 < / stack>
7 < / pa r t >
8 <co l >
9 <pin th ickness=" 1 " / >

10 <pin th ickness=" 2 " / >
11 <pin th ickness=" 3 " / >
12 < / co l >

Logic
Many popular template engines (e.g., EJS, Hogan.js, Jade)
support basic programmatic logic that can be specified directly
in a tag as an extra attribute. This logical attribute is often
referred to as a directive. CraftML provides two directives:
repeat and if. The former is useful for repeating a structural
pattern, while the latter is useful for controlling whether or not
to render a node. This example uses the list comprehension
logic to create a row of five shapes with increasing sizes,
alternating between a cube and a sphere.

1 <row>
2 <g repeat= " i i n [1 ,2 ,3 ,4 ,5] " t = " sca le { { i } } ">
3 <cube i f = " i % 2 === 1 " / >
4 <sphere i f = " i % 2 === 0 " / >
5 < / g>
6 < / row>

Advanced Features
Here we introduce advanced features intended to enable expert
developers to build sophisticated models or to develop useful
extensions.

Scripting
Although CraftML provides a rich vocabulary of tags and
transformation/layout commands to meet a wide range of 3D
modeling needs, there are situations when experts want to have
more control and increase complexity. For instance, an expert
may wish to lay out elements in a custom wave pattern, or
enlarge any element that is smaller than 20mm on the x-axis,
or generate a computational structure to represent a given data
set. CraftML allows custom scripting by writing JavaScript
code inside of a <script> block.

Within each script block, a special local variable $params is
made available for a programmer to manipulate the parameters
in the scope. A programmer can add, modify, or delete parame-
ters. The modification will then be visible to all the subsequent
sibling nodes and their descendents. In the example below, we
define a data array of two objects; each has attributes a and b
and we write a f or loop to preprocess the data. This array is
assigned to $params as a new property. Then, the data becomes
available to the next sibling (<row>) that defines a row of cubes
whose x and y dimensions are mapped to a and b. Atop each
cube is a cylinder whose diameter is mapped to b.

1 < s c r i p t >
2 var data = [{ a :5 , b : 2 0 } , { a : 3 , b : 5 0 } , { a : 4 , b :100 } ,
3 { a :2 , b : 4 0 }] ;
4 f o r (var i = 0 ; i < data . leng th ; i ++){
5 data [i] . a += 5;
6 data [i] . b /= 2 ;
7 }
8 $params . data = data ;
9 </ s c r i p t >

10 <row spacing=" 2 ">
11 <stack repeat= " d i n data ">
12 < c y l i n d e r
13 t = " s ize xy { { d . a } } " / >
14 <cube
15 t = " s ize { { d . a } } { { d . b } } 1 " / >
16 < / stack>
17 < / row>

JQuery
JQuery is one of the most popular Javascript libraries for
programming dynamic web pages by manipulating DOM.
CraftML provides a special variable $ for selecting and modi-
fying certain nodes in the model hierarchy, just like the typical
JQuery symbol in web programming. Continuing from the
previous example, suppose we want to move only the cubes
to the right by 20. The script below accomplishes this by first
selecting all the cubes who are the children of a stack (line
2) and evaluating a transformation expression to translate the
selected cubes along x (line 3).

1 < s c r i p t >
2 $ (’ s tack > cube ’)
3 . t (’ t r a n s l a t e x 2 0 ’) ;
4 < / s c r i p t >

Figure 1. Cloud-based IDE for CraftML users to develop, debug, and
share their designs

INTEGRATED DEVELOPMENT ENVIRONMENT (IDE)
To support CraftML users to develop, debug, and share their
designs, we developed a cloud-based integrated development
environment (IDE). Figure 1 shows a screenshot of this IDE.
The design displayed in the IDE is a U-shaped rod composed
of three parts: two cylinders and a half donut. We use a
scenario to walk thorough the key features of this IDE.

Coding and Live-Previewing
For Bob, making cylinders is easy. He writes a <cylinder> and
adds a repeat directive to get two copies. He wraps it with
a <row> and specifies spacing to separate the two cylinders
along the x-axis. All the while, he sees the rendered model
updated automatically each time he makes an edit (Figure 1.e).
Bob also has an option to turn off this automatic rendering
feature (Figure 1.b). In the literature, the ability to receive
live feedback is shown to significantly reduce syntactic and
semantic errors [15].

Searching and Importing a Module
Bob needs another half donut to complete his design. He
presses the “INSERT” button (Figure 1.a) and a dialog opens.
This dialog is a search interface for all of the models which
are published on the platform. He enters “donut” as a search
term. A search engine retrieves a list of design documents
containing this term. In some documents, the term appears
in the titles given by the original authors as meta-data. Most
search engines for 3D models support similar meta-data search.
But here, Bob also sees many other documents where the
search term appears as a part of the code. For instance, a
user explicitly specified <donut>. This case arises when: (1)
a user defined a custom part and called it “donut”, or (2) a
user imported a design and named it “donut.” Either way, Bob
learns a few things about how to build a donut structure in
the former case and how to use an existing donut design in
the latter case. He decides to simply import an existing donut
design (Figure 1.h).

Bob’s experience here highlights a benefit of taking a declara-
tive approach—we get content-based search almost for free.
We found when using CraftML, designers are more likely to
use meaningful tag names, IDs, and class labels to define local
structures while they are designing, as opposed to assigning
meta-data after they finished the design as an after thought.

Currently, the search function in our prototype is provided
by ElasticSearch [11]. There exists even more potential for
content-based search of CraftML models. One future research
avenue is to explore structural search wherein user apply com-
mands such as “find me models containing a row of at least
three cylinders” in a similar vein as Webzeitgeist [21] for
searching web design patterns.

Parametrization / Sharing / Exporting
Bob wants to share his design with others. But instead of a
fixed design, he wants to add parameters to make it easy to cus-
tomize. He adds two <param> tags: one to control the diameter
of the rod and the other to control the length. As soon as he
defines the parameters in the code, the IDE detects them and
automatically generates a form populated with input controls,
one for each parameter (Figure 1.g). Bob creates a shared link
(Figure 1.d) and emails it to his friend, Matt. Matt opens the
link and accesses the design. He finds the form and begins to
enter values to customize the design to his imagination. Each
time he enters a new value, the model automatically updates.
Finally, Matt is satisfied with his variations and presses the
big pink download button to get an STL file (Figure 1.f).

Code Highlighting / Learning / Debugging
Bob makes his design public. In a distant part of the world,
Jane discovers the design and opens it up in her browser. She
uses several viewing features provided by the IDE (Figure 1.i)
to move the model for inspection. As her mouse cursor hovers
over a part (red dowel in Figure 1), the part is highlighted along
with the corresponding lines in the code(Figure 1c, line5-6).
Being able to see this correspondence, Jane quickly learns the
composition and logic underlying Bob’s design. Jane even
spots an error. The cylinders are slightly misaligned. With the
help of code highlighting , Jane quickly finds the source of the
error and fixes it.

EXAMPLES

Floor to Ceiling
CraftML offers a development path from simple to sophisti-
cated as users become more experienced with its features. We
present a five step scenario to exemplify this path, wherein
each step builds upon the previous one. Figure 2 shows the
evolving design along the way.

Step 1: Lucy, a beginner web developer, writes her first “Hello
World” program:

1 Hel lo World

Step 2: Lucy learns to use basic primitives, structural tags, and
transformation operators. She writes the simple code below to
create her name tag. She downloads an STL file and 3D prints
it.

1 <stack>
2 <d iv >Hel lo Lucy< / d i v >
3 <cube t = " s ize 50 10 2 " / >
4 < / stack>

Step 3: As Lucy increases her web development experiences,
she now considers herself to be a competent web template

Figure 2. Example of building from the simplest "Hello World" design to more complex designs.

designer. She has learned how to write a stylesheet and can de-
sign templates using mustache expressions (i.e., {{ }}). Also,
she has increased competency with simple logical directives
such as repeat. She now adds contrasting colors and a stripe of
five domes to decorate her name tag. She adds a parameter for
others to customize the name tag with their own name. The
source code of her new design now reads as follows:

1 <param name="name" value=" Lucy " / >
2 < s t y l e >
3 d iv { co l o r : whi te ; }
4 #board { co lo r : brown ; }
5 dome { co lo r : gold ; }
6 < / s t y l e >
7 <stack>
8 <co l spacing=" 2 ">
9 <row spacing=" 4 ">

10 <g repeat= " 5 " t = " s ize 5 5 2 ">
11 <dome / >
12 < / g>
13 < / row>
14 <d iv >Hel lo { { name } } < / d i v >
15 < / co l >
16 <cube i d =" board " t = " s ize 50 30 2 " / >
17 < / stack>

Step 4: Lucy’s skills have grown rapidly and she has begun
to identify as a programmer. She has learned about refactor-
ing and can design complex templates. She is also getting
accustomed with JQuery. She updates her design to:

1 . . .
2 < pa r t name=" s t r i p e ">
3 <row spacing=" 4 ">
4 <g repeat= " 5 " t = " s ize 5 5 2 ">
5 <content / >
6 < / g>
7 < / row>
8 < / pa r t >
9

10 <stack>
11 <co l spacing=" 2 " i d = " aboutme ">
12 < s t r i p e > <dome / > < / s t r i p e >
13 <d iv >Hel lo { { name } } < / d i v >
14 < s t r i p e > <prism / > < / s t r i p e >
15 < / co l >
16 <cube i d =" board " / >
17 < s c r i p t >
18 $params .w = $ (’ # aboutme ’) . s i ze () . x
19 $ (’ # board ’) . t (" s i ze { { w + 10 } } 30 2 ")
20 < / s c r i p t >
21 < / stack>

Intending to create two stripes instead of one, Lucy defines a
new part called “stripe” to encapsulate the logic for creating
a row of shapes (lines 2-8). She uses <stripe> twice (lines 12,
14), each contains a different shape to repeat—a dome and a
prism. The previous design has a bug; if someone’s name is
too long, the board is not wide enough. She resolves this bug

by writing a script that calculates the width of the content (line
18) and dynamically sets the board’s width to fit it (line 19).

Step 5: Lucy wants to make a name tag for her friend who is
blind. She changes line 13 to the following:

1 < b r a i l l e >Hel lo { { name } } < / b r a i l l e >

Now she has a Braille version of the design. She 3D prints a
copy and gifts it to her friend.

Wide Walls
CraftML offers wide walls for a range of modeling applica-
tions. To demonstrate this, we present eight distinct applica-
tion categories with selected examples 1

Characters: Even with simple primitives as building blocks,
it is possible to create artistic characters. Figure 3 shows an
Angry Bird composed of spheres and cones; a Minion who
wears a pair of goggles, which is an imported STL file; a
Charmander composed of a pixel-based design; the Linux Tux
with organic curves made by smoothing between primitives;
and Homer Simpson whose hair is actually a flipped ‘W.’

Figure 3. Characters: AngryBird, Minion, Charmander, Linux Tux,
Homer Simpson.

Assistive Devices: 3D printing is a promising method to ac-
commodate physical constraints and limitations by bridging
gaps between digital designs and physical objects. For exam-
ple, if a door handle is too small for a user’s grip, a user can 3D
print a lever to augment the handle to make it easier to open.
However, assistive augmentation designs on Thingiverse are
mostly static and non-parametric [7]. Figure 4 shows an as-
sistive door handle lever with customizable handle length and
loop radius; a zipper pull with customizable width and thick-
ness; a cup holder with a customizable size; a graspable bottle
opener with a variable number of flanges; and a customizable
corner cover to protect a toddler from sharp furniture corners.
Researchers also used CraftML to turn non-parametric off-the-
shelf assistive device models from online to be parametric, by
implanting modular adjustors [20].

Fractals: A fractal is an abstract object used to describe and
simulate iteratively occurring objects. Implementing a fractal
typically involves recursion, which is difficult to do in a GUI-
based modeling tool. CraftML allows a part to recursively
1Hyperlinks in figure captions refer to the CraftML source code.

https://craftml.io/s14G-
https://craftml.io/EJRRK
https://craftml.io/qo6n-
https://craftml.io/b3VQ1
https://craftml.io/8zTBz

Figure 4. Assistive Devices: lever, zipper pull, cup holder, grasable bot-
tle opener, furniture corner cover

include itself and provides the if logic directive to check for a
terminating condition—two necessary ingredients for coding
a fractal. Figure 5 shows an H-tree, a heart emblem, a Menger
sponge, a randomly generated snowflake, and a candle tower.

Figure 5. Fractals: h-tree, heart emblem, Menger sponge, snowflake,
candle tower.

Mechanical Components: Parametric and reusable mechan-
ical components are good candidates for modeling in CraftML.
Figure 6 shows examples of parametric gearboxes written in
CraftML. They can be remixed with other 3D models. These
gearboxes are exposed to users as modules just like any other
CraftML modules. Users can customize aspects such as the
size of a gear or the length of a shaft by specifying attribute
values.

Figure 6. Mechanical Components: crank, bevel gear, friction gear,
multi gears, double cam. Arrows were added to indicate the mobility
of each unit.

Education Manipulatives: 3D printing has been used in
STEM education as a way to turn abstract, invisible concepts
into a tangible representation one can see and touch [19].
Figure 7 shows models of a hydrogen emission spectrum, a
methane molecule, an oxizen molecule, a cell membrance, and
a plant cell. .

Figure 7. Education Manipulatives: hydrogen emission spectrum,
methane, oxizen (generated from the same parametric design as the pre-
vious), cell membrane, plant cell.

Data Physicalization: Physical representations of data pro-
duced by digital fabrication are shown to help people explore,
understand, and communicate data in a tangible and accessible
manner [17, 19]. CraftML makes programming data phys-
icalization designs similar to programming web-based data
visualizations using libraries such as D3 [10]. A programmer
imports a data array and defines how to map each element in
the array to a structural element. In D3, a digital bar chart is

a result of mapping data values to the heights of a series of
rectangles. In CraftML, a physical bar chart can be similarly
defined by mapping data values to the heights of a row of
cubes. Figure 8 shows examples of 3D printable versions of
common chart types developed using CraftML. All the designs
are parametric and customizable with new data.

Figure 8. Data Physicalization: barchart, scatter plot, line chart, pie
chart, tree map.

Dual-material printing: Designing a model for dual-
materials or colors is challenging; most slicing tools for multi-
ple extruders require the exact same number of separate input
files in order to assign them to each extruder head. CraftML
provides the capability to download individual segments of
a model simply using a CSS selector. Figure 9 lists five ex-
amples, which were successfully printed. For example, in
the red-white twisted thread example, a user may assign class
labels ‘white’ and ‘red’ to each color region. In turn, the user
can select one segment using ‘.white‘ and the other segment
using ‘.red’ to obtain two separate STL files, which can then
be sent to a 3D printer.

Figure 9. Dual-material Printing: stars in a heart, alligator clip, twisted
thread, Christmas card, titanic.

CASE STUDIES

Youth Summer Camp
Instructors of a summer camp experimented with adding
CraftML into their existing 3D printing lesson plan. It was
added on the 4th day of a week-long program. In a 3 hour
session, a group of 9 to 12-year-old children (N = 8) learned to
use CraftML to make a “homepage” by writing simple tags to
define a page and then importing existing models to include in
the page (Figure 10). They also learned to design simple mod-
els by first building a LEGO representation and then breaking
it down into a hierarchy of primitives. They learned how to
describe the hierarchy using various tags. One particularly
effective example was a “snowman.” Most children could
instinctively relate a snowman to a geometric abstraction of a
stack with three cubes. Given partially completed code of a
stack with two cubes, most children could correctly interpret
the code and write another correctly placed <cube> to make
a snowman. However, some required staff assistance to fix

Figure 10. CraftML was taught in a youth summer camp.

https://craftml.io/VJQYd
https://craftml.io/QsakT
https://craftml.io/yy_J-
https://craftml.io/26m-U
https://craftml.io/26m-U
https://craftml.io/vfF6X
https://craftml.io/0BvU4
https://craftml.io/4JZTc
https://craftml.io/Vk2h5
https://craftml.io/4ySND
https://craftml.io/EyA25
https://craftml.io/41cOf
https://craftml.io/VJlTc
https://craftml.io/4JEfn
https://craftml.io/VJRbB
https://craftml.io/N1wg0
https://craftml.io/EJwqj
https://craftml.io/Nke4L
https://craftml.io/Nke4L
https://craftml.io/4JB8k
https://craftml.io/0_wiL
https://craftml.io/NJxkl
https://craftml.io/4JG1e
https://craftml.io/Ey_kx
https://craftml.io/41hyX
https://craftml.io/41hyX
https://craftml.io/N1m1e
https://craftml.io/meDFC
https://craftml.io/rhXgk
https://craftml.io/Tyvfq
https://craftml.io/Tyvfq
https://craftml.io/58HFS
https://craftml.io/Vdjia

syntax errors such as to properly open and close tags. Thus,
the result of this experiment was mixed. While young de-
signers were definitely exposed to the benefits of “coding” a
design, we consider whether being also exposed to the perils
of real-world coding (syntax errors) is beneficial.

Tactile Picture Book Project
Tactile Picture Book Project (TPBP) is an initiative to design
and give accessible 3D printed story books to children with
visual impairments [36]. The TPBP team works with families
across the world to create a custom book for their children.
They take specifications from families and make changes to
individual pages, such as what braille text to include on each
page or the minimum margins between elements. Initially,
the team used existing tools to make changes but found the
process rather difficult and time consuming. For example, to
change the Braille text in TinkerCAD, they needed to manually
move “dots” and do that for every page. After transitioning
to CraftML, the team made a common template shared across
pages and books. Each template has places to put Braille
and tactile graphical contents. Also, they added parameters
for several aspects of their designs, such as the number of
animals, the number of stars in the sky, and the spacing along
the borders. Customization became easier; they simply entered
parameter values via a form.

While CraftML continues to augment TPBP’s workflow, there
exist limitations. We observed that the TPBP team did not
use CraftML to model all elements. For textual and structural
elements, such as Braille, rainbows, and repeated waves, they
wrote CraftML code. But for natural elements such as giraffes,
they opted to find an existing STL file on Thingiverse or to use
a GUI-based tool to first sculpt it. Then they imported the pre-
made model into CraftML and applied various transformation
and layout operators to customize it. This design practice is
similar to web design. A designer prepares images in another
tool and embeds them in an HTML document.

Designing Modular Prosthetic
A researcher on asssitive technology wanted to contribute to
the eNable [13] initiative by designing a modular 3D printable
prosthetic hand. One particular issue this researcher intended
to tackle was the difficulty in customizing the end-effector of
a prosthetic hand. The researcher took inspiration from the
design of the Python Utility Hand as seen in Figure 11 (left).
This design consists of a gauntlet and a number of interchange-
able effectors, such as a cup holder and a card holder. But this
existing design is not parametric. One needs to load the file
into a CAD software and manually edits the model. Using
CraftML, the researcher reverse-engineered this design and
introduced parameters to control various dimensions of the
design. Also, a set of compatible and customizable effectors
were developed. The researcher provided a module that en-
capsulates all the logic of attaching an effector to a gauntlet.
Others can create a custom hand by writing the code below:

1 <at tach module=" . . . ">
2 <cup−ho lder modulde=" . . . " d iameter= " 100 " / >
3 < gaun t l e t module=" . . . " l eng th=" 350 " / >
4 < / a t tach>

Figure 11. CraftML was used to reverse engineer the python utility hand
(left) to a modular, parametric design (right).

Examples of custom gauntlet designs generated by this code
are shown in Figure 11 (right). This case study illustrates the
potential of CraftML for designers to revisit certain useful
designs originally created in a CAD tool and reverse-engineer
it to obtain a parametric, customizable version.

Teaching Web Programming in an HCI Class
Instructors of an introductory HCI course wanted their students
to gain exposure to basic web programming (HTML/CSS).
One issue they encountered was inequality in students’ techni-
cal background; some were already familiar with HTML/CSS,
while others had no experience. Typical tutorials for basic
web programming would be beneficial to some students but
boring to the others. The instructors experimented with using
CraftML in the class. Two homework assignments were de-
signed as an equalizer for all students to understand nested
tags and basic CSS styling. Regardless of prior background,
students had an opportunity to learn something novel and use-
ful. The first homework was for each student to create a name
tag. The second homework was to create a landmark in each
student’s favorite city. Almost all students were able to com-
plete their assignments (176/177). Many students exceeded
the requirements. Figure 12 shows a selection of students’
works, including high quality and average submissions. This
case study suggests knowledge and skill can be transferred
bi-directionally between CraftML and web programming.

DISCUSSION
We discuss a number of design decisions behind CraftML that
could potentially generate debate.

Declarative Alternative to Extrusion. Extrusion is a key pro-
cedure in many programmatic 3D modeling tools to support
the conversion of a 2D shape into a 3D shape. For instance,
we take a 2D circle lying on the x-y plan, move it along the
z-axis, and “extrude out” a 3D cylinder. However, in develop-
ing CraftML, we resisted supporting extrusion because of its
strong association with the imperative programming paradigm.
We challenged ourselves to find declarative alternatives that
are functionally equivalent to extrusion. After experimenting
with several options, we decided on the following declarative
semantic: “A 3D solid is a set of [walls] built around a [lay-
out] of [2D shapes].” For example, a sloped cylinder can be
expressed declaratively as:

1 <stack t = " wa l l ">
2 < c i r c l e / >< c i r c l e t = " t r a n s l a t e x 10 " / >
3 < / stack>

Figure 12. CraftML was taught to a large CS course as a hook for and a bridge to web programming. Selected examples of students’ works are shown.

A donut, often accomplished imperatively by a “circular ex-
trude” procedure, can be written as:

1 < pa r t name=" donut " t = " wa l l ">
2 <sun−l ayou t module="uHUIw" rad ius=" 30 ">
3 < c i r c l e repeat= " 25 " t = " r o t a t e x 90 " / >
4 < / sun−l ayou t >
5 < / pa r t >

This declares a donut as “walls around a sun layout of 25
circles.” So far, we have not yet encountered situations that
cannot be handled by our declarative alternative. We have seen
early evidence to suggest this declarative construct is easy for
web developers at all skill levels to grasp.

Inverted Y-Axis. In web design, we use a screen coordinate
system where the y-axis is inverted. As new content nodes
are added to a page, they move toward the bottom of the page
and their y-positions increase (rather than decreasing). In
developing CraftML, we aimed to offer a conceptual model
consistent with web design regarding spatial relationships.
Thus, we decided to adopt the screen coordinate system for
the x-y plane in CraftML’s design environment. This choice
has some desirable effects, such as: a) when creating a 2D
shape, its upper-left corner is (0, 0); and b) when writing text
elements, the natural reading order (downward and right) is
positive in both x and y directions. This consistency enables
web developers to bring their spatial reasoning from web de-
sign directly into 3D modeling without the burden of mental
inversion. Also, certain code written for the web can be copied
directly into CraftML without any coordinate flipping (e.g.,
<div>, <path>). However, the decision to adopt inverted y-axis
did not come easily. We knew we would break tradition with
nearly every 3D modeling tool where the y-axis is not inverted.
In the spirit of our research initiative, we ultimately adhered
to the convention followed by nearly every web design tool.

LIMITATIONS & FUTURE WORK
While CraftML inherits several benefits from the web pro-
gramming paradigm, it also inherits some issues:

Broken Links. In order to encourage content sharing and
remixing, CraftML makes it easy to link to other design files
with limited restrictions. When a design file is rendered, our

rendering engine pulls in the latest version of all upstream
dependencies dynamically. One benefit is that if an upstream
design is improved, such improvement is automatically prop-
agated downstream to every design that links to it. However,
there exists a consequence. If an update to a design introduces
an error, breaks certain assumptions, or a design is deleted,
all downstream designs would be similarly broken. To deal
with this issue, we need to create a robust versioning system,
such as: (a) allowing users to take a snapshot (sacrificing au-
tomatic update); or (b) implementing a semantic versioning
system popularized (increasing the workload for export/import
modules).

Attributions. The health of a creative platform depends not
only on an easy mechanism to share and reuse but also on a
proper way to handle attributions. In web design, attributions
to linked resources operate like an honor system. Designers
are not forced to include attributions and may do so out of
courtesy. Currently, CraftML’s online platform has a limited
attribution mechanism. It assumes the most generous creative-
common license. and keeps track of a history of cloning and
forking. When an external design is linked, the online editor
prominently displays its source and author. However, more can
be done, such as: requiring users to credit each linked source,
allowing designers to pick a license, and adding constraints to
module linking to respect such license.

CONCLUSION
In this work, we set out to explore the web programming
paradigm as a viable alternative to the imperative program-
ming paradigm for programmatic 3D modeling. We developed
a new language, CraftML, that offers a rich set of program-
ming constructs familiar to web developers, such as declarative
syntax, semantic tags, CSS, Javascript, JQuery, string interpo-
lation, and templates. We showed examples and case studies as
supporting evidence for concluding that the web programming
paradigm is indeed a viable and beneficial alternative.

ACKNOWLEDGMENTS
We thank Tactile Picture Books Team from University of
Colorado Boulder, for their creative endeavors to enhance
CraftML. This research is supported by NSF Grant No. IIS-
1453771.

REFERENCES
1. A-Frame. https://aframe.io/.

2. Autodesk Fusion360.
https://www.autodesk.com/products/fusion-360/overview.

3. Autodesk Fusion360 API.
https://autodeskfusion360.github.io/.

4. Rhino and Grasshopper Developer Documentation.
http://developer.rhino3d.com/.

5. AngularJS. https://angularjs.org/.

6. BlocksCAD. https://www.blockscad3d.com/.

7. Erin Buehler, Stacy Branham, Abdullah Ali, Jeremy J.
Chang, Megan Kelly Hofmann, Amy Hurst, and Shaun K.
Kane. 2015. Sharing is Caring: Assistive Technology
Designs on Thingiverse. In Proceedings of the 33rd
Annual ACM Conference on Human Factors in
Computing Systems (CHI ’15). ACM, New York, NY,
USA, 525–534. DOI:
http://dx.doi.org/10.1145/2702123.2702525

8. Xiang ’Anthony’ Chen, Jeeeun Kim, Jennifer Mankoff,
Tovi Grossman, Stelian Coros, and Scott E. Hudson.
2016. Reprise: A Design Tool for Specifying, Generating,
and Customizing 3D Printable Adaptations on Everyday
Objects. In Proceedings of the 29th Annual Symposium
on User Interface Software and Technology (UIST ’16).
ACM, New York, NY, USA, 29–39. DOI:
http://dx.doi.org/10.1145/2984511.2984512

9. Thingiverse Customizer.
https://customizer.makerbot.com/.

10. D3. https://d3js.org/.

11. ElasticSearch. https://www.elastic.co/.

12. Anhong Guo, Jeeeun Kim, Xiang ’Anthony’ Chen, Tom
Yeh, Scott E. Hudson, Jennifer Mankoff, and Jeffrey P.
Bigham. 2017. Facade: Auto-generating Tactile
Interfaces to Appliances. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems
(CHI ’17). ACM, New York, NY, USA, 5826–5838. DOI:
http://dx.doi.org/10.1145/3025453.3025845

13. Enabling The Future âĂŞ A Global Network Of
Passionate Volunteers Using 3D Printing To Give The
World A ‘Helping Hand.’. 2017.
http://enablingthefuture.org/.

14. Nathaniel Hudson, Celena Alcock, and Parmit K. Chilana.
2016. Understanding Newcomers to 3D Printing:
Motivations, Workflows, and Barriers of Casual Makers.
In Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems (CHI ’16). ACM, New
York, NY, USA, 384–396. DOI:
http://dx.doi.org/10.1145/2858036.2858266

15. Christopher D. Hundhausen and Jonathan Lee Brown.
2007. An experimental study of the impact of visual
semantic feedback on novice programming. Journal of
Visual Languages Computing 18, 6 (2007), 537 – 559.
DOI:http://dx.doi.org/https:
//doi.org/10.1016/j.jvlc.2006.09.001

16. Jacek Jankowski, Izabela Irzynska, Bill McDaniel, and
Stefan Decker. 2009. 2LIPGarden: 3D Hypermedia for
Everyone. In Proceedings of the 20th ACM Conference
on Hypertext and Hypermedia (HT ’09). ACM, New
York, NY, USA, 129–134. DOI:
http://dx.doi.org/10.1145/1557914.1557938

17. Yvonne Jansen, Pierre Dragicevic, Petra Isenberg, Jason
Alexander, Abhijit Karnik, Johan Kildal, Sriram
Subramanian, and Kasper Hornbæk. 2015. Opportunities
and Challenges for Data Physicalization. In Proceedings
of the 33rd Annual ACM Conference on Human Factors
in Computing Systems (CHI ’15). ACM, New York, NY,
USA, 3227–3236. DOI:
http://dx.doi.org/10.1145/2702123.2702180

18. JQuery. https://jquery.com/.

19. Shaun K. Kane and Jeffrey P. Bigham. 2014. Tracking
@Stemxcomet: Teaching Programming to Blind Students
via 3D Printing, Crisis Management, and Twitter. In
Proceedings of the 45th ACM Technical Symposium on
Computer Science Education (SIGCSE ’14). ACM, New
York, NY, USA, 247–252. DOI:
http://dx.doi.org/10.1145/2538862.2538975

20. Jeeeun Kim, Anhong Guo, Tom Yeh, Scott E. Hudson,
and Jennifer Mankoff. 2017. Understanding Uncertainty
in Measurement and Accommodating Its Impact in 3D
Modeling and Printing. In Proceedings of the 2017
Conference on Designing Interactive Systems (DIS ’17).
ACM, New York, NY, USA, 1067–1078. DOI:
http://dx.doi.org/10.1145/3064663.3064690

21. Ranjitha Kumar, Arvind Satyanarayan, Cesar Torres,
Maxine Lim, Salman Ahmad, Scott R. Klemmer, and
Jerry O. Talton. 2013. Webzeitgeist: Design Mining the
Web. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’13). ACM,
New York, NY, USA, 3083–3092. DOI:
http://dx.doi.org/10.1145/2470654.2466420

22. Meshmixer. http://www.meshmixer.com/.

23. OpenSCAD The Programmers Solid 3D CAD Modeller.
http://www.openscad.org/.

24. Pietro Murano and Dino Mackey. 2007. Usefulness of
VRML building models in a direction finding context.
Interacting with Computers 19, 3 (2007), 305–313. DOI:
http://dx.doi.org/10.1016/j.intcom.2007.01.005

25. Lora Oehlberg, Wesley Willett, and Wendy E. Mackay.
2015. Patterns of Physical Design Remixing in Online
Maker Communities. In Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing
Systems (CHI ’15). ACM, New York, NY, USA, 639–648.
DOI:http://dx.doi.org/10.1145/2702123.2702175

26. OopenJSCAD. https://openjscad.org/.

27. Raf Ramakers, Fraser Anderson, Tovi Grossman, and
George Fitzmaurice. 2016. RetroFab: A Design Tool for
Retrofitting Physical Interfaces Using Actuators, Sensors
and 3D Printing. In Proceedings of the 2016 CHI

https://aframe.io/
https://www.autodesk.com/products/fusion-360/overview
https://autodeskfusion360.github.io/
http://developer.rhino3d.com/
https://angularjs.org/
https://www.blockscad3d.com/
http://dx.doi.org/10.1145/2702123.2702525
http://dx.doi.org/10.1145/2984511.2984512
https://customizer.makerbot.com/
https://d3js.org/
https://www.elastic.co/
http://dx.doi.org/10.1145/3025453.3025845
http://enablingthefuture.org/
http://dx.doi.org/10.1145/2858036.2858266
http://dx.doi.org/https://doi.org/10.1016/j.jvlc.2006.09.001
http://dx.doi.org/https://doi.org/10.1016/j.jvlc.2006.09.001
http://dx.doi.org/10.1145/1557914.1557938
http://dx.doi.org/10.1145/2702123.2702180
https://jquery.com/
http://dx.doi.org/10.1145/2538862.2538975
http://dx.doi.org/10.1145/3064663.3064690
http://dx.doi.org/10.1145/2470654.2466420
http://www.meshmixer.com/
http://www.openscad.org/
http://dx.doi.org/10.1016/j.intcom.2007.01.005
http://dx.doi.org/10.1145/2702123.2702175
https://openjscad.org/

Conference on Human Factors in Computing Systems
(CHI ’16). ACM, New York, NY, USA, 409–419. DOI:
http://dx.doi.org/10.1145/2858036.2858485

28. Mitchel Resnick, John Maloney, Andrés
Monroy-Hernández, Natalie Rusk, Evelyn Eastmond,
Karen Brennan, Amon Millner, Eric Rosenbaum, Jay
Silver, Brian Silverman, and Yasmin Kafai. 2009. Scratch:
Programming for All. Commun. ACM 52, 11 (Nov. 2009),
60–67. DOI:http://dx.doi.org/10.1145/1592761.1592779

29. Rhinoceros. https://www.rhino3d.com/.

30. RubyScad. https://github.com/cjbissonnette/RubyScad.

31. Valkyrie Savage, Ryan Schmidt, Tovi Grossman, George
Fitzmaurice, and Björn Hartmann. 2014. A Series of
Tubes: Adding Interactivity to 3D Prints Using Internal
Pipes. In Proceedings of the 27th Annual ACM
Symposium on User Interface Software and Technology
(UIST ’14). ACM, New York, NY, USA, 3–12. DOI:
http://dx.doi.org/10.1145/2642918.2647374

32. SketchUp. https://www.sketchup.com/.

33. Maya: Computer Animation & Modeling Software.,
Autodesk.
https://www.autodesk.com/products/maya/overview.

34. SolidPython. https://github.com/SolidCode/SolidPython.

35. SolidWorks. http://www.solidworks.com/.

36. Abigale Stangl, Chia-Lo Hsu, and Tom Yeh. 2015.
Transcribing Across the Senses: Community Efforts to
Create 3D Printable Accessible Tactile Pictures for
Young Children with Visual Impairments. In Proceedings
of the 17th International ACM SIGACCESS Conference
on Computers & Accessibility (ASSETS ’15). ACM, New
York, NY, USA, 127–137. DOI:
http://dx.doi.org/10.1145/2700648.2809854

37. Gilbert Tekli, Richard Chbeir, and Jacques Fayolle. 2013.
A visual programming language for XML manipulation.
Journal of Visual Languages Computing 24, 2 (2013),
110 – 135. DOI:http://dx.doi.org/https:
//doi.org/10.1016/j.jvlc.2012.11.001

38. TinkerCAD. https://www.tinkercad.com/.

39. Cesar Torres and Eric Paulos. 2015. MetaMorphe:
Designing Expressive 3D Models for Digital Fabrication.
In Proceedings of the 2015 ACM SIGCHI Conference on
Creativity and Cognition (C&C ’15). ACM, New
York, NY, USA, 73–82. DOI:
http://dx.doi.org/10.1145/2757226.2757235

40. Yunbo Zhang, Wei Gao, Luis Paredes, and Karthik
Ramani. 2016. CardBoardiZer: Creatively Customize,
Articulate and Fold 3D Mesh Models. In Proceedings of
the 2016 CHI Conference on Human Factors in
Computing Systems (CHI ’16). ACM, New York, NY,
USA, 897–907. DOI:
http://dx.doi.org/10.1145/2858036.2858362

http://dx.doi.org/10.1145/2858036.2858485
http://dx.doi.org/10.1145/1592761.1592779
https://www.rhino3d.com/
https://github.com/cjbissonnette/RubyScad
http://dx.doi.org/10.1145/2642918.2647374
https://www.sketchup.com/
https://www.autodesk.com/products/maya/overview
https://github.com/SolidCode/SolidPython
http://www.solidworks.com/
http://dx.doi.org/10.1145/2700648.2809854
http://dx.doi.org/https://doi.org/10.1016/j.jvlc.2012.11.001
http://dx.doi.org/https://doi.org/10.1016/j.jvlc.2012.11.001
https://www.tinkercad.com/
http://dx.doi.org/10.1145/2757226.2757235
http://dx.doi.org/10.1145/2858036.2858362

	Introduction
	Related Works
	Markup Languages
	GUI vs Programming for 3D Modeling
	Supporting Customization

	Design Philosophy
	Language
	Basic Features
	Primitives
	Structure
	Text
	Id/Class
	Style
	Transform
	Layout
	Imports

	Intermediate Features
	Part and Parameters
	Logic

	Advanced Features
	Scripting
	JQuery

	Integrated Development Environment (IDE)
	Coding and Live-Previewing
	Searching and Importing a Module
	Parametrization / Sharing / Exporting
	Code Highlighting / Learning / Debugging

	Examples
	Floor to Ceiling
	Wide Walls

	Case studies
	Youth Summer Camp
	Tactile Picture Book Project
	Designing Modular Prosthetic
	Teaching Web Programming in an HCI Class

	Discussion
	Limitations & Future Work
	Conclusion
	Acknowledgments
	REFERENCES

